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TAYLOR EXPANSION ALGORITHM FOR THE BRANCHING

SOLUTION OF THE NAVIER-STOKES EQUATIONS

KAITAI LI AND YINNIAN HE

Abstract. The aim of this paper is to present a general algorithm for the

branching solution of nonlinear operator equations in a Hilbert space, namely

the k-order Taylor expansion algorithm, k ≥ 1. The standard Galerkin method

can be viewed as the 1-order Taylor expansion algorithm; while the optimum

nonlinear Galerkin method can be viewed as the 2-order Taylor expansion al-

gorithm. The general algorithm is then applied to the study of the numerical

approximations for the steady Navier–Stokes equations. Finally, the theoretical

analysis and numerical experiments show that, in some situations, the optimum

nonlinear Galerkin method provides higher convergence rate than the standard

Galerkin method and the nonlinear Galerkin method.
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1. Introduction

Many integral equations and differential equations in mathematical physics can
be reduced to the operator equations. The operator equations and their numeri-
cal approximation are very important in the areas of theoretical mathematics and
computational mathematics(see[1]). The main feature of the approximate theory
of the operator equations is to apply the functional analytic method to the study
of the numerical approximation of the operator equations, which will provide new
ideas and new algorithms for the computational mathematics.

This paper is devoted to present the k-order Taylor expansion algorithms for
the branching Solution of the nonlinear operator equations. The standard Galerkin
(SG) method and the optimum nonlinear Galerkin (ONG) method can be viewed
as specific Taylor expansion algorithms.As the important application of the al-
gorithms, we consider the numerical approximations of the 2–D steady Navier-
Stokes equations and estimate the convergence rates of the corresponding algo-
rithms.Moreover, we also recall the convergence rate of the nonlinear Galerkin
(NG) methods presented in[4–9]. Our theoretical analysis and numerical experi-
ments show that the ONG method is of the higher convergence rate than the NG
method and the SG method.
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2. Operator Equation and Taylor Expansion Algorithms

We are given a Hilbert space H with a scalar product(·, ·)and a norm | · |. The
abstract operator equation that we will study has the form

F (u) = f.(2.1)

Here F : D(F ) ⊂ H → H is a nonlinear operator, D(F ) = v ∈ H;F (v) =∈ His
the domain of operator F , f ∈ His given and u ∈ D(f) is a unknown function(or
vector function)defined in a bounded domain Ω of R2or R3.

We now recall the following Taylor expansion (see[1]).
Theorem 2.1. Assume that F : D(F ) → H is the continuous Fréchet differentiable
of the k-order. Then for each p ∈ D(F ),q ∈ H, p+q ∈ D(F ) there holds the Taylor
expansion with the integral remainder, namely

F (p+ q) = F (p) + 1
1!DF (p)q + · · · + 1

(k−1)!D
k−1F (p)qk−1

+ 1
(k−1)!

∫ 1

0
(1 − t)k−1DkF (p+ tq)qk dt.

(2.2)

For each n > 0, we let Hn be a n–dimensional subspace of H and Pn : H → Hn

be an orthogonal projection operator. To introduce the Taylor expansion algorithm,
we select a large n and rewrite the solution u of (2.1) as

u = p+ q, p = Pnu ∈ Hn, q = (I − Pn)u ∈ H\Hn,

such that p represents the large eddies of the flow and q represents the small eddies
of the flow, namely |q| → 0(as n→ ∞) (refer to [2-3]). Hence, we apply respectively
Pn and Qn = I − Pn to (2.1):

PnF (p+ q) = Pnf,(2.3)

QnF (p+ q) = Qnf.(2.4)

Assume that F (u) = F (p + q) can be rewritten as the Taylor expansion (2.2).
Thanks to q being the small eddies of the flow, it is then reasonable to neglect

some small terms as DF (p)q, 1
2!DF (p)q2, · · · 1

(k−1)!

∫ 1

0
(1 − t)k−1DkF (p + tq)qk dt ,

in (2.2). Then we obtain the following Taylor expansion algorithms:
the 1-order Algorithm : Find uapp = y ∈ Hn such that

PnF (y) = Pnf ;(2.5)

the 2-order Algorithm : find uapp = y + z ∈ H, y ∈ Hn, z ∈ H\Hn, such that

PnF (y + z) = Pnf,(2.6)

Qn(F (y) +DF (y)z) = Qnf ;(2.7)

the k-order Algorithm : find uapp = y + z ∈ H, y ∈ Hn, z ∈ H\Hn, such that

PnF (y + z) = Pnf,(2.8)

Qn(F (y) +DF (y)z + · · · 1

(k − 1)!
Dk−1F (y)zk−1) = Qnf.(2.9)

Notice that (2.7),(2.9) are the infinite dimensional system. From the computa-
tional point of view we have to replaceH\Hn andQn byHN\Hn andQN

n = PN−Pn

in (2.7),(2.9), where N > n will be chosen according to some convergence analysis.
In particular, we notice that the 1-order Taylor expansion Algorithm is then the

standard Galerkin (SG) method. Moreover, the 2-order Taylor expansion Algorithm


