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A PRIORI AND A POSTERIORI ERROR ESTIMATES FOR
BOUSSINESQ EQUATIONS

KARAM ALLALI

Abstract. This paper deals with an incompressible viscous flow problem,

where the Navier-Stokes equations are coupled with a nonlinear heat equation.

Existence and uniqueness results are established. Next, a finite element ap-

proximation of the problem is presented and analyzed. Error estimates are

obtained and a posteriori error estimate is given.
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1. Introduction

In this paper, we are interested in an incompressible viscous fluid governed by
Navier-Stokes equations, when they are coupled with a nonlinear heat equation
by the intermediary of the reaction source term. The considered model is the
system formed by the equations describing the flow, under the approximation of
Boussinesq. Within the framework of this approximation, we do not take account
of the variation of density. Therefore the density is regarded as constant in the
equation of mass conservation. The Boussinesq approximation was justified and
used to study some chemical phenomena as in [10, 11]. Numerical analysis and
finite element approximation of this model, in non stationary form, is studied in
[1, 9]. In this work, we are interested in a similar model, but in a stationary form.

Let Ω an open bounded convex domain of IRd (d=2,3), with Lipschitz continuous
boundary Γ . In Ω, we consider the following stationary model:

(P )





−∆T + u.∇T + f(T ) = 0, in Ω,

−µ∆u + (u.∇)u +∇p = F (T ), in Ω,

div u = 0,

u = 0 and T = 0, on Γ,

where the unknown factors are speed u, the pressure p and the temperature T ;
the coefficient µ (the viscosity of the fluid) is assumed to be positive. The data
are a regular function F of IR to IRd (typically, the function F is a gravity force
proportional to the variations of density, therefore dependents on the temperature)
and an other regular function f of IR to IR∗+ (typically, the function f is the source
term of the reaction depending on the temperature and also on energy; usually this

Received by the editors April 12, 2004 and, in revised form, July 7, 2004.
2000 Mathematics Subject Classification. 65N30.
The author is grateful to Dr. A. Agouzal for valuable discussions.

179



180 K. ALLALI

function is obtained by the Arrhenius law). On datas, we assume that the first
and the second derivatives are bounded.

This model has been studied by using topological degree theory to prove the
existence results in [2] and by using mixed-dual variational formulation in two
dimensions in [6, 7], the authors of these last works introduced the gradient of
velocity and the gradient of temperature as unknowns, on which, they give some a
priori error estimates.

In the next section, we prove a result of existence and uniqueness of the continu-
ous problem. In the third section, Some usual finite element spaces are introduced,
for speed, for the pressure and for the temperature. A discrete problem is given, we
prove some error estimates on the speed, on the pressure and on the temperature.
Finally in the last section, a posteriori error estimate is given.

2. Existence and uniqueness

The variational form of the problem (P ) can be written as following:

(P0)





Find (u, p, T ) ∈ (H1
0 (Ω))d × L2

0(Ω)×H1
0 (Ω) such that

∀v ∈ (H1
0 (Ω))d, µ

∫

Ω

∇u.∇vdx +
∫

Ω

[(u.∇)u]vdx−
∫

Ω

pdiv vdx

=
∫
Ω

F (T )vdx,

∀q ∈ L2
0(Ω),

∫

Ω

qdiv udx = 0,

∀s ∈ H1
0 (Ω),

∫

Ω

(∇s∇T + u.∇T )dx +
∫

Ω

f(T )sdx = 0.

First of all, we will rewrite the problem in an equivalent form, allowing us to prove
the existence of the weak solution. For that, we introduce the spaces:

V = {v ∈ (H1
0 (Ω))d, div = 0} and Y = V ×H1

0 (Ω).

Let A(., .) the map defined by:

∀((u, T ), (v, s)) ∈ Y 2,

A((u, T ), (v, s)) =
∫

Ω

(µ∇u∇v + (u.∇)uv)dx−
∫

Ω

F (T )vdx

+
∫

Ω

∇T.∇sdx +
∫

Ω

(u.∇T )sdx +
∫

Ω

f(T )sdx.

We consider the problem

(P1)





Find(u, T ) ∈ V ×H1
0 (Ω), such that

∀(v, s) ∈ V ×H1
0 (Ω), A((u, T ), (v, s)) = 0.

It is easy to see that, if the triplet (u, p, T ) ∈ (H1
0 (Ω))d × L2

0(Ω) × H1
0 (Ω)) is

solution of (P0), then (u, T ) is solution of (P1). Reciprocally, for any solution
(u, T ) ∈ V ×H1

0 (Ω) of (P1), there exist a unique element p of L2
0(Ω) such that the

triplet (u, p, T ) is solution of (P0). To prove the existence of the solution for the
problem (P1), we need the following theorem:


