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Abstract. Convergence and superconvergence of the interpolated coefficient

finite element method (ICFEM) are discussed as the ICFEM reduces the com-

putation cost greatly. Further, the ICFEM is implemented to compute the

multiple solutions of some semilinear elliptic problems.
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1. Introduction

As semilinear partial differential equations arise in physics, biology, energy, and
engineering, their study has attracted the attention of many pure and applied math-
ematicians and physicists. It is well known that the standard finite element method
plays a very important role in solving these problems. Unfortunately, the compu-
tation cost for implementing the finite element method is usually very expensive.

To overcome this difficulty, a simple and graceful idea called the interpolated co-
efficient finite element method (ICFEM), which was originally inspired by solving
semilinear parabolic problems, was proposed by M. Zlámal [12] et al. Further, he
obtained the error estimate ‖(uh − u)(t)‖ = O(h2) for the linear element solution
uh(t) with an unproven assumption that ||uh(t)||∞ is bounded. Later, Larsson,
Thomée, and Zhang [9] studied the linear triangular finite element solution uh(t)
and obtained the error estimate ‖(uh − u)(t)‖ = O(h). In [3], implementing some
superconvergence techniques, Chen, Larsson, and Zhang derived an almost opti-
mal convergence order ‖(uh − u)(t)‖ = O(h2 ln h) on piecewise uniform triangular
meshes.

In this paper, we show that the interpolated coefficient finite element method
for solving the semilinear elliptic equations has the same convergence order or even
superconvergence properties as those of the standard finite element method. More-
over, combined with the Improved Search-extension Method [4, 11], the ICFEM is
used to compute the multiple solutions of some typical semilinear elliptic problems.
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2. Convergence and superconvergence of the ICFEM

For completeness, below the interpolated coefficient finite element method for
solving semilinear elliptic problems is introduced first.

Consider a semilinear elliptic problem with zero Dirichlet boundary condition,
i.e.,

(1) −Di(aijDju) + au + f(u) = 0 in Ω, u = 0 on ∂Ω,

with its weak form

(2) Q(u, v) = A(u, v) + (f(u), v) = 0, ∀v ∈ S0,

where Ω is a 2-dimensional bounded domain with Lipschitz boundary ∂Ω,
S0 = {u ∈ H1(Ω), u = 0 on ∂Ω}, and the bilinear form

A(u, v) =
∫

Ω

(aij(x)DiuDjv + a(x)uv)dx

is assumed to be bounded and S0-coercive.
We assume that the domain Ω is subdivided into a finite number of elements τ

with the subdivision Jh and let Zh = {xj}M
1 be the set of all interior nodes. Denote

by Sh ⊂ S0 the n-degree finite element subspace and {Nj(x)}M
1 the bases of Sh.

It is well known that the standard finite element solution uh ∈ Sh of (1) can be

expressed as uh(x) =
M∑

j=1

UjNj(x) ∈ Sh, Uj = uh(xj), and satisfies

(3) A(uh, v) + (f(uh), v) = 0, ∀v ∈ Sh.

By taking v = Ni, i = 1, 2, ...,M , (3) leads to a nonlinear system of equations

(4)
M∑

j=1

A(Nj , Ni)Uj − (f(
M∑

j=1

Nj(x)Uj), Ni) = 0, i = 1, 2, ...M,

which is often solved by the Newton method. It is known that the Jacobi ma-
trix is the main concern in the implementation of the Newton method. A direct
computation shows that the Jacobi matrix of (4) is

(5) J = {A(Nj , Ni)− (f ′(
M∑

k=1

NkUk)Nj , Ni)}M×M ,

which has to be updated repeatedly as the iterations proceed. Obviously, the
integrations for the second term in (5) are quite large and will result in the very
time-consuming and expensive computation of the Newton method.

Now we introduce the interpolated coefficient finite element method for solving

(1). Substitute the interpolation Ihf(uh) =
M∑

j=1

Nj(x)f(Uj) with Uj = uh(xj)

rather than f(uh) into (3) and still denote the interpolated coefficient finite element

solution uh =
N∑

j=1

UjNj(x). Then we obtain a new finite element equation

(6) A(uh, v) + (Ihf(uh), v) = 0, ∀v ∈ Sh.

As a result, we obtain a nonlinear algebraic system of equations

(7)
M∑

j=1

(kijUj + mijf(Uj)) = 0, i = 1, 2, ..., M,


