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EQUATION

TIAO LU, WEI CAI, AND PINGWEN ZHANG

(Communicated by Zhimin Zhang)

Abstract. This paper presents a high order local discontinuous Galerkin

time-domain method for solving time dependent Schrödinger equations. After

rewriting the Schrödinger equation in terms of a first order system of equations,

a numerical flux is constructed to preserve the conservative property for the

density of the particle described. Numerical results for a model square poten-

tial scattering problem is included to demonstrate the high order accuracy of

the proposed numerical method.
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1. Introduction

Traditional analytic solutions of Schrödinger equations using plane wave analysis
and perturbation technique can only handle simple planner structures or weak
perturbations [1][2]. Direct numerical solution of the time dependent Schrödinger
equation provides an efficient and flexible way to study quantum structures in
complicated geometric configurations such as quantum wells, quantum wires and
quantum dots embedded in layered media. It allows us to address the effect of
impurities and scattering of rough interfaces and also different type of incident waves
used to probe the quantum structures [2]. Finite element methods and boundary
element methods have been used to solve Schrödinger equations [3].

In this paper, we will introduce a discontinuous Galerkin method for time de-
pendent Schrödinger equations for hetero-structures with possible different effective
masses. We will limit our consideration to one dimensional models though the basic
numerical technique can be extended to multi-dimensional problems. An important
property of the resulting numerical algorithms is the conservation for the probabil-
ity density of the particles under consideration, which we will prove for the proposed
numerical method. The basic numerical method follows closely with the discontin-
uous Galerkin methods proposed in [6] for the heat equation where an auxiliary
flux variable was introduced to rewrite a second order partial differential diffusion
equation in terms of a system of first order PDEs. For more references on the
development of discontinuous Galerkin methods for other types of applications, we
refer the readers to [4]-[8].
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The remaining of the paper is organized as follows. After introducing the ba-
sics of Schrödinger equation in Section 2, the local discontinuous Galerkin (LDG)
method is proposed for an one-dimensional Schrödinger equation in Section 3. In
Section 4, we will construct a numerical flux which is shown to keep the conserva-
tive property of the continuity equation for the density function. Numerical results
are given in Section 5 to demonstrate the convergence of the proposed method for
a model scattering problem of one square potential barrier. Finally, a conclusion
and plan of future work is given in Section 6.

2. Time Dependent Schrödinger Equation

We consider the one-dimensional effective mass Schrödinger equation [2]
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where m is the effective mass, V is the potential function, i =
√−1, and u is the

complex-valued wave function. Consider a single electron whose probability density
is given by
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and whose probability current density is given by
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If u obeys (1), probability density n and current density J satisfy the following
continuity equation
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3. Local Discontinuous Galerkin (LDG) Numerical Method
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Figure 1. [0,1] is discretized into N = 4 segments. Black dots
are the nodes xj .

To define LDG method for (1), we introduce a variable
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so we have (assuming that V = 0)
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