
INTERNATIONAL JOURNAL OF c© 2005 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 2, Supp , Pages 131–137
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Abstract. History matching is an inverse problem of partial differential

equation on mathematics. We adopt the constrained non-linear optimization

to handle this problem, defining the objective function as the weighted square

sum of differences between the wells simulation values and the corresponding

observation values. We develop an optimization computing program that in-

clude Zoutendijk feasible direction methodQuasi-Newton method (BFGS) and

improved Nelder-Mead simplex method, combined with a black-oil simulator,

and discuss the convergence characters of algorithms in case studies about

determining average porosity and directional permeability, determining low

permeability strip between two wells and determining oil-water relative per-

meability curves.
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1. Problem

History matching is absolutely necessary for a real reservoir simulation, which is
to find a suitable set of values for the simulator’s input parameters such that the
simulator correctly predicts the fluid outputs and the pressures of the wells on the
reservoir. It is an inverse problem of partial differential equation on mathematics,
and is not a well-posed problem [1-20]. Yet there must exist a solution reflecting real
formation condition for a real reservoir problem. So we would focus attention on
the stability of the history matching problem model and the algorithm feasibility,
not to be concerned with the existence and singleness of the solution.

2. Mathematic Model

We adopt the constrained non-linear optimization most in use for inverse prob-
lem of partial differential equation to handle history matching problem, define the
objective function as the weighted square sum of differences between the wells sim-
ulation values and the corresponding observation values:

(1) f(X) =
nw∑

i=1

nt∑

j=1

nk∑

k=1

ω(i, j, k)[yobj(i, j, k)− ycal(i, j, k)]2

where yobj , ycal denote the observation values and simulator computing values
respectively, ω denotes parameter scale coefficient i, j, k denote well number, time
segment and data kind respectively, nw, nt, nk are the maximum of i, j, k respec-
tively , X denotes optimal vector.

For a general history matching problemthe objective function is an implicit func-
tion of the optimal vectorit needs to carrying out a simulation run to gain a objec-
tive function value, it is the uppermost computing cost. Therefore dealing equality
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constrained history matching problem, should adopt elimination method to reduce
variable number, so as to optimization computing converge rapidly. So a general
history problem can be posted as an inequality constrained nonlinear optimization
problem

(2) min f(X) X ∈ En

s.t gi(X) ≥ 0 i = 1, · · · ,m

The optimal vector X, the objective function f(X) and the inequality constrained
function vector G(X) are different for different history matching problem.

3. Algorithms

We develop an optimization computing program that include Zoutendijk feasible
direction methodQuasi-Newton method (BFGS) and improved Nelder-Mead simplex
method [21], combined with a black-oil simulator, and discuss the convergence char-
acters of algorithms in some case studies.

Zoutendijk feasible direction method is a constrained nonlinear optimiza-
tion method, it is in different ways to deal linear constraints and nonlinear con-
straints.

For linear inequality constraints optimization problem

(3)
min f(X)
s.t AX ≥ b

where, f(X) is differential function, A is m × n matrix. X ∈ En, b is m dimen-
sion column vector. Zoutendijk feasible direction method transform determinating
descent feasible direction d to solving following linear programming problem, ac-
cording necessary conditions 5f(X)T d0, A1d ≥ 0,

(4)
min 5f(X)T d
s.t A1d ≥ 0
|dj | ≤ 1 j = 1, · · ·n

Linear search step restriction:

(5) λmax =

{
min{Bj

Dj
|Dj < 0}, D < 0

∞ D > 0

where, A1X = b1, A2X > b2, A =
[

A1

A2

]
, b =

[
b1

b2

]
, B = b2−A2Xi, D = A2di

For nonlinearinequality constraints optimization problem,

(6)
min f(X)
s.t gi(X) ≥ 0 i = 1, · · · ,m

whereX ∈ En, f(X), gi(X) are differentiable functions. Zoutendijk feasible direc-
tion method transform determinating descent feasible direction d to solving fol-
lowing linear programming problem, according necessary conditions 5f(X)T d < 0,
5gi(X)T d > 0, i ∈ I, I = {i|gi(X) = 0}

(7)

min Z
s.t 5f(x)T d− Z ≤ 0

5gi(x)T d− Z ≥ −gi(x), i = 1, · · · ,m
|dj | ≤ 1 i = 1, · · · ,m


