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A SUPERCONVERGENT FINITE ELEMENT SCHEME FOR THE
REISSNER-MINDLIN PLATE BY PROJECTION METHODS

JUNPING WANG AND XIU YE

Abstract. The Reissner-Mindlin model is frequently used by engineers for

plates and shells of small to moderate thickness. This model is well known

for its “locking” phenomenon so that many numerical approximations behave

poorly when the thickness parameter tends to zero. Following the formulation

derived by Brezzi and Fortin, we construct a new finite element scheme for the

Reissner-Mindlin model using L2 projections onto appropriately-chosen finite

element spaces. A superconvergence result is established for the new finite ele-

ment solutions by using the L2 projections. The superconvergence is based on

some regularity assumption for the Reissner-Mindlin model and is applicable to

any stable finite element methods with regular but non-uniform finite element

partitions.
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1. Introduction

The Reissner-Mindlin plate is a mathematical model that is frequently used
by engineers for plates and shells of small to moderate thickness. To describe the
model, we consider a plate or a shell of thickness t > 0. Let Ω be the region occupied
by the plate. Denote by w = w(x, y) and φ = (φ1, φ2)t the transverse deflection of
Ω and the rotation of the fibers normal to Ω, respectively. The Reissner-Mindlin
plate model determines w and φ as the unique solution to the following variational
problem: find (w,φ) ∈ H1

0 (Ω)×[H1
0 (Ω)]2 such that for all (v,ψ) ∈ H1

0 (Ω)×[H1
0 (Ω)]2

(1.1) a(φ,ψ) + λt−2(φ−∇w,ψ −∇v) = (g, v),

where g is the scaled transverse loading function, λ = Ek/2(1 + ν) is the shear
modulus with E the Young’s modulus, ν the Poisson ratio, k the shear correction
factor. The symbol ∇ denotes the gradient operator. H1(Ω) is the Sobolev space
defined by

H1(Ω) =
{
v : v ∈ L2(Ω),∇v ∈ [L2(Ω)]2

}
.

Here L2(Ω) is the set of square integrable functions over the domain Ω with norm
‖·‖ and inner product (·, ·). H1

0 (Ω) is the subspace of H1(Ω) consisting of functions
with vanishing boundary value. The bilinear form a(·, ·) in (1.1) is given by

a(φ,ψ) =
E

12(1− ν2)

∫
Ω

[(1− ν)ε(φ) : ε(ψ) + ν∇ · φ∇ ·ψ],
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where ∇· is the divergence operator, ε(φ) = 1
2 [∇φ+∇φt], and −1 < ν < 1

2 .
An obvious numerical procedure for the Reissner-Mindlin model would be a

Galerkin finite element method based on the weak formulation (1.1) in which w
and φ are both approximated by continuous piecewise polynomials over a pre-
scribed finite element partition T h of Ω. However, such schemes are known to have
“locking” difficulty in that the resulting numerical approximations behave poorly
when the thickness parameter t tends to zero. Many researchers have been working
on the Reissner-Mindlin model by aiming at designing efficient and “locking free”
numerical schemes. Among a few of successes, we mention the work of Brezzi and
Fortin [3] who derived a formulation for the Reissner-Mindlin model by introducing
two variables (the irrotational and solenoidal parts of the transverse shear strain)
in addition to the primitive variables (the transverse displacement and the rotation
vector) and developed a finite element method which is locking free. Inspired by
the work of Brezzi and Fortin, Arnold and Falk [1] developed an efficient trian-
gular element for the Reissner-Mindlin model in the primitive variables using the
P1 nonconforming linear element for the transverse displacement and conforming
linear element with bubbles for the rotation to the Reissner-Mindlin model. They
proved that the method converges with an optimal order uniformly with respect to
the thickness. For more literature, the reader is referred to [5] [6], [2], [4], [9] and
references therein.

The objective of this paper is to propose and analyze a modified scheme for
the Brezzi-Fortin method [3], which will yield numerical approximations for the
Reissner-Mindlin plate model with high order of accuracy. There are two challenges
to this task: (1) modification of the Brezzi-Fortin’s method, and (2) tedious analysis
for the postprocessing projection method of Wang [11]. Our result has potential
impact in practical computation for Reissner-Mindlin model in that it can provide
an efficient a posteriori error estimator for adaptive grid local refinement.

2. The Brezzi-Fortin Formulation and Approximation

We first introduce some standard notations. Denote by Hm(Ω) for any integer
m ≥ 0 the Sobolev space:

Hm(Ω) =
{
v : ∂α1

x ∂α2
y v ∈ L2(Ω), αi ≥ 0, α1 + α2 ≤ m

}
with norm given by

‖v‖s =

 ∑
α1+α2≤m

‖∂α1
x ∂α2

y v‖2
 1

2

.

For non-integer values of m, Hm(Ω) is defined via the standard interpolation
method. Let D(Ω) be the linear space of infinitely differentiable functions with
compact support on Ω. As usual, Hs

0(Ω) is the closure of D(Ω) with respect to the
norm ‖ · ‖s. For any function φ ∈ H1

0 (Ω), denote its curl by

∇×φ = ∂2φ1 − ∂1φ2.

Denote by ∇⊥ the formal adjoint of ∇× given by

∇⊥p =
(
−∂2p
∂1p

)
, p ∈ H1(Ω).

Following [1], without loss of generality we may assume that λ = 1 and

a(φ, ψ) = (∇φ, ∇ψ).


