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LEAST-SQUARES FINITE ELEMENT METHODS FOR
FIRST-ORDER ELLIPTIC SYSTEMS

PAVEL BOCHEV

Abstract. Least-squares principles use artificial “energy” functionals to pro-

vide a Rayleigh-Ritz-like setting for the finite element method. These function-

als are defined in terms of PDE’s residuals and are not unique. We show that

viable methods result from reconciliation of a mathematical setting dictated by

the norm-equivalence of least-squares functionals with practicality constraints

dictated by the algorithmic design. We identify four universal patterns that

arise in this process and develop this paradigm for first-order ADN elliptic sys-

tems. Special attention is paid to the effects that each discretization pattern

has on the computational and analytic properties of finite element methods, in-

cluding error estimates, conditioning of the algebraic systems and the existence

of efficient preconditioners.
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1. Introduction

After a somewhat disappointing start in the early seventies1, the use of least-
squares finite elements has been steadily increasing over the last decade. A key
factor for the renewed interest in such methods was the idea of their application
to equivalent first-order systems rather than to the original PDE problem; see [17],
[22], [18], [11] and [13]. This paid off in turning least-squares methods into a viable
alternative to Galerkin finite elements, especially in fluid flow computations; see [6]–
[12], [18]–[21], [23], and [27]–[29]. From a mathematical viewpoint another notion,
namely the concept of norm-equivalent least-squares “energy” functionals emerged
as a universal prerequisite for recovering fully the Rayleigh-Ritz setting. However,
it was soon realized that norm-equivalence is often in conflict with practicality, even
for first-order systems (see [6], [11] and [12]); and because practicality is usually
the rigid constraint in the algorithmic development, norm equivalence was often
neglected.

The main goal of this paper is to establish the reconciliation between practi-
cality, as driven by algorithmic development, and norm-equivalence, as motivated
by mathematical analyses, as the defining paradigm of least-squares finite element
methods. The key components of this paradigm are a continuous least-squares prin-
ciple (CLSP) which describes a mathematically well-posed, but perhaps impractical,
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variational setting, and an associated discrete least-squares principle (DLSP) which
describes an algorithmically feasible setting. The relation between a CLSP and
a DLSP follows four universal patterns which lead to four classes of least-squares
finite element methods with distinctly different properties.

We develop this paradigm for the important class of first-order systems that are
elliptic in the sense of Agmon-Douglis-Nirenberg [1]. In particular, we show that
degradation of fundamental properties of least-squares methods such as condition
numbers, asymptotic convergence rates, and existence of spectrally equivalent pre-
conditioners occurs when DLSP deviates from the conforming setting induced by a
given CLSP.

In what follows Ω will denote a simply connected bounded region in Rn, n = 2, 3
with a sufficiently smooth boundary Γ. Throughout the paper we employ the
usual notations Hd(Ω), ‖ · ‖d; d ≥ 0 for the Sobolev spaces of all functions having
square integrable derivatives up to order d on Ω, and the standard Sobolev norm,
respectively. As usual, Hd

0 (Ω) will denote the closure of C∞(Ω) with respect to the
norm ‖ · ‖d and H−d(Ω) will denote the dual of Hd

0 (Ω). The symbol Sh
d will stand

for a space of continuous, piecewise polynomial functions defined with respect to a
regular triangulation Th of the domain Ω. It is assumed that for every u ∈ Hd+1(Ω)
there exists uh ∈ Sh

d with

(1) ‖u− uh‖0 + h‖u− uh‖1 ≤ Chd+1‖u‖d+1.

For regular triangulations the Euclidean norm of the coefficient vector of uh, de-
noted by |ξ|, and the L2 norm of uh are related by the inequality

(2) C−1hM |ξ| ≤ ‖uh‖0 ≤ ChM |ξ| ,

where M denotes the dimension of Sh
d . We will also need the inverse inequality

(3) ‖uh‖1 ≤ Ch−1‖uh‖0

which holds for most standard finite element spaces on regular triangulations; see
[16].

2. Continuous and discrete least-squares principles

We consider boundary value problems of the form

(4) L(x, D) u = f in Ω and R(x, D) u = g on Γ.

Here u = (u1, u2, . . . , uN ) is a vector of dependent variables, L(x, D) = Lij(x, D),
i, j = 1, . . . , N and R(x, D) = Rlj(x, D), l = 1, . . . , L, j = 1, . . . , N . For simplicity,
in what follows we will write Lu and Ru. Concerning (4), we make the following
assumption:

A.: There exist Hilbert spaces X = X(Ω), Y = Y (Ω), and Z = Z(Γ) such
that

(5) C2‖u‖X ≤ ‖Lu‖Y + ‖Ru‖Z ≤ C1‖u‖X .

This relation is fundamental to least-squares methods because it defines the proper
“balance” between solution energy as measured by ‖u‖X and data energy, as mea-
sured by ‖Lu‖Y + ‖Ru‖Z . We note that the setting determined by (5) is not, in
general, unique2.

2For example, if (L,R) has a complete set of homeomorphisms (5) holds on a Hilbert scale;
see [24] and [25].


