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ORTHOGONAL SPLINE COLLOCATION FOR SINGULARLY

PERTURBED REACTION DIFFUSION PROBLEMS IN ONE

DIMENSION
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Abstract. An orthogonal spline collocation method (OSCM) with C1 splines of degree r ≥ 3

is analyzed for the numerical solution of singularly perturbed reaction diffusion problems in one
dimension. The method is applied on a Shishkin mesh and quasi-optimal error estimates in
weighted Hm norms for m = 1, 2 and in a discrete L2-norm are derived. These estimates are valid
uniformly with respect to the perturbation parameter. The results of numerical experiments are

presented for C1 cubic splines (r = 3) and C1 quintic splines (r = 5) to demonstrate the efficacy
of the OSCM and confirm our theoretical findings. Further, quasi-optimal a priori estimates in
L2, L∞ and W 1,∞-norms are observed in numerical computations. Finally, superconvergence

of order 2r − 2 at the mesh points is observed in the approximate solution and also in its first
derivative when r = 5.
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1. Introduction

In this paper, we consider singularly perturbed reaction diffusion problems of
the form

Lu(x) := −εu′′(x) + a(x)u(x) = f(x), x ∈ I ≡ (0, 1),(1)

subject to the Dirichlet boundary conditions,

u(0) = 0, u(1) = 0,(2)

where the parameter ε is such that 0 < ε ≪ 1. It is assumed that the prescribed
functions a and f are smooth on I with

(3) a(x) ≥ α > 0, x ∈ I,

where α is a constant. Problems of this type are ubiquitous in the mathematical
modeling of numerous real life phenomena; see, for example, [18, 21] and references
therein. The solution of (1)–(2) exhibits a multi scale character. Specifically, there
is a thin transition layer, often called a boundary layer, at one or both ends of
the interval I, in which the solution varies rapidly, while away from the layer,
the solution behaves smoothly and varies gradually. This singular behavior of the
solution presents some challenges in the development of methods to solve this type of
problem accurately and efficiently. One of the most successful approaches involves
the use of layer-adapted meshes such as Shishkin meshes [24], which yield methods
that converge uniformly, regardless of the magnitude of the parameter ε; see, for
example, [17].

In the literature, much attention has been devoted to the development of numer-
ical methods for the solution of singularly perturbed differential equations which
converge uniformly with respect to the parameter ε. This work is chronicled in
numerous texts, research papers, such as [2, 17, 15, 18, 20, 21, 22, 23, 25, 27] and
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survey articles [11, 12, 13]. Broadly speaking, there are three principal approach-
es to solving (1)–(2) numerically, namely; finite difference methods, finite element
methods and spline collocation methods. Particular attention has been devoted
to the latter class of methods, especially, spline collocation based on smoothest
splines such as classical C2 cubic splines; see, [9, 10]. Invariably, these methods
yield approximations of suboptimal accuracy. For example, cubic spline collocation
applied to (1)–(2) cannot be more than second order accurate, a fact proved in [3].
A collocation method of optimal accuracy that has been used to solve a variety
of problems involving ordinary and partial differential equations is the orthogonal
spline collocation method (OCSM); see, for example, [1]. The popularity of the or-
thogonal spline collocation approach is due to its conceptual simplicity, wide range
of applicability and ease of implementation. This method, often called spline col-
location at Gauss points in the literature, was originally formulated and analyzed
over 40 years ago in the seminal paper [4], but has seen little use in the numerical
solution of singularly perturbed problems.

In 1980, Flaherty and Mathon [8] used collocation methods with either piecewise
polynomials or splines in tension to obtain accurate approximations of one dimen-
sional singularly perturbed boundary value problems. In their paper, the authors
state “Unfortunately, collocation at the Gauss-Legendre points with piecewise poly-
nomials is known to behave rather poorly on singularly-perturbed problems for any
partition, where ε is much smaller than the minimum subinterval length.” In an
attempt to generalize the results of [4] to (1)-(2), the authors of [16] considered
collocation methods with C1-quadratic splines using a modified Shishkin mesh and
derived almost second order convergence in the maximum norm. In their paper, the
authors state, “C1-splines with arbitrary order for such problems presents an open
task”. In the present article, we develop and analyze an OSCM with C1 splines
of order r ≥ 3 for solving (1)-(2) using Shishkin meshes in weaker norms. In par-
ticular, we derive quasi-optimal estimates of order (N−1 logN)r+1−m in weighted
Hm-norms, m = 1, 2, and of order (N−1 logN)r+1 in a discrete L2 norm, where
N is the number of mesh subintervals. These estimates are valid uniformly with
respect to the perturbation parameter ε. The results of numerical experiments con-
firm our theoretical findings. It is also observed from numerical experiments that
error estimates in L2, L∞ and W 1,∞-norms are quasi-optimal, which are uniform
in ε. Moreover, they demonstrate the exceptional performance of the OSCM, es-
pecially its ability to yield high order approximations systematically. In [26], the
OSCM with r = 3 on a Shishkin mesh is considered but, using a different analysis,
it is proved that the convergence rate in L∞(I) is O(N−4 log5N).

A brief outline of this paper is as follows. In Section 2, we introduce notation
and some basic results used in the convergence analysis. In Section 3, the OSCM
employing a Shishkin mesh is applied to discretize (1)–(2). Section 4 is devoted
to the convergence analysis. In Section 5, the results of numerical experiments are
presented which illustrate the efficacy of the method and confirm the analytical
results. Moreover, they exhibit superconvergence properties of the method which,
while anticipated, are as yet unproven. Concluding remarks are given in Section 6.

2. Preliminaries

2.1. Notation. Let πh = {xj}Nj=0 denote a partition of I = [0, 1] with

0 = x0 < x1 < . . . < xN−1 < xN = 1.


