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A PARTITIONED METHOD WITH DIFFERENT TIME STEPS

FOR COUPLED STOKES AND DARCY FLOWS WITH

TRANSPORT

JINGYUAN ZHANG, HONGXING RUI, AND YANZHAO CAO

Abstract. A decoupled finite element algorithm with different time steps on different physical

variables for a Stokes-Darcy interface system coupled with the solution transport is studied. The
viscosity of the Stokes equation is assumed to depend on the concentration of the transported

solution. The numerical algorithm consists of two steps. In the first step, the system is decoupled

on the interface. In the second step, the time derivatives are discretized with different step sizes for
different partial differential equations in the system. An careful error analysis provides a guidance

on the ratio of the step sizes with respect to the ratio of the physical parameters. Numerical

examples are presented to verify the theoretical results and illustrate the effectiveness of the
decoupled algorithm of using different time steps.
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1. Introduction

Recently there have been growing interests in building suitable mathematical
and numerical models for the coupling of fluid flows in a porous medium domain
and a free flow domain. In the porous medium domain, the fluid flow can be
modeled by a Darcy equation while in the free flow domain the fluid flow can be
modeled by a Stokes equation. The Darcy equation and the Stokes equation are
coupled through conditions on the interface which connects the porous domain
and the free flow domain. Modeling through the Stokes-Darcy system has a wide
arrange of applications such as hydrology[5], environment science[12], and biofluid
dynamics[15].

A number of numerical methods have been developed for the coupled Stokes-
Darcy flow system, including the domain decomposition method [2, 39, 9], the
mixed finite element method [1, 23, 38], the non-conforming finite element methods
[33], the Mortar multiscale finite element methods [20], the Lagrange multiplier
and mixed element methods [4, 24, 27, 16, 17], the mixed finite element method
combining with the DG method [31, 32], the DG method combining with mimetic
finite difference method [25], the pseudospectral least squares method [21] and
spectral method [41], and many other numerical methods [18, 10, 26, 29].

The aim of this paper is to construct an efficient numerical algorithm for the
Stokes-Darcy flow system coupled with an advection-diffusion equation that mod-
els, for example, the transport of a chemical. In [8], Cesmelioglu and Riviere study
the existence and stability of the weak solution with the fluid viscosity depending on
the concentration for this model. For numerical methods, in [40] the flow equations
are solved through the domain decomposition method using classical finite element
methods in the Stokes region and mixed finite element methods in the Darcy re-
gion, and the transport equation is solved by a local discontinuous Galerkin (LDG)
method, while in [34] the authors proposed a mixed weak formulation and use the
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nonconforming piecewise Crouzeix- Raviart finite element, piecewise constant and
conforming piecewise linear finite element to approximate velocity, pressure and
concentration, respectively.

In this paper, we study the finite element approximation of the Stokes-Darcy-
Transport system with different time steps on different physical variables. As a
multi-phyiscs problem, each of the equations in the the Stokes-Darcy-Transport
system has a different time scale reflected by the corresponding partial differential
equation and the related physical parameters. Thus it is natural to use larger time
step in the region with slower velocity. The multiple-time-step technique for the
non-stationary Stokes-Darcy model was presented in [36, 37]. There the viscosity
of the free flow, the hydraulic coefficient of the flow in porous medium and the
diffusion coefficient of the transport are assumed to be constants. In this study, we
assume that viscosity and the hydraulic conductivity depend on the concentration
of the transport and the diffusion coefficient depends on the velocity of flow in
the porous medium. Under a modest time step restriction in relation to physical
parameters, we obtain the stability of the method and a priori error estimates.
With the help of such error analysis we derive criteria of choosing the time step for
each physical variables in accordance to the ratios of the physical parameters. In
particular, we show that the ratio between the time steps should be proportional to
the ratios between these physical parameters. For spatial discretization, we adopt
the decoupling method of [28] (see also [6, 22, 37]).

The rest of the article is organized as follows. In Section 2, we introduce the
model problem, and present the mixed weak formulation. Coupling and decoupling
schemes, and the stability of the decoupling scheme with different time steps on
different subdomains are given in Section 3. The error estimates for fluid velocity,
kinematic pressure, piezometric head and concentration are presented in Section
4. Finally in Section 5, we present some numerical examples to demonstrate our
theoretical results.

Through out this paper we use K and C, with or without subscription, to denote
a generic constant, which may have different values in different appearances.

2. Model problem and weak formulation

The model under consideration is a flow in a bounded domain Ω ⊂ RN (N=2 or
3), consisting of an fluid flow region Ωf , where the flow is governed by the Stokes

equation, and a porous medium region Ωp = Ω\Ωf , where the flow is governed by
the Darcy’s law. Here Ωl(l = f, p) are bounded domains with outward unit normal
vectors nl(l = f, p). The whole domain Ω is occupied by a mixture of two mis-
cible fluids which before mixing are each incompressible, therefore the Boussinesq
approximation is valid and the mean-volume velocity is thought to be equal to the
mean mass velocity. The two regions are separated by an interface ΓI = ∂Ωf ∩∂Ωp,
and τj , j = 1, · · · , N − 1 denote an orthonormal system of tangent vector on ΓI .
On the interface, we have nf = −np. Let Γl = ∂Ωl\ΓI(l = f, p). Each interface
and boundary is assumed to be polygonal or polyhedral. Figure 1 gives a schematic
representation of the geometry with N=2.

The equations of motion, continuity and mass transport for the fluid velocity
u(x, t), kinematic pressure p(x, t) and concentration c(x, t) in Ωf can be written
as

∂tu−∇ · (2µ(c)S(u)) +∇p = f(c), x ∈ Ωf , t ∈ J,(1)

∇ · u = 0, x ∈ Ωf , t ∈ J,(2)


