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A DISCONTINUOUS RITZ METHOD FOR A CLASS OF

CALCULUS OF VARIATIONS PROBLEMS

XIAOBING FENG AND STEFAN SCHNAKE

Abstract. This paper develops an analogue (or counterpart) to discontinuous Galerkin (DG)
methods for approximating a general class of calculus of variations problems. The proposed

method, called the discontinuous Ritz (DR) method, constructs a numerical solution by minimizing
a discrete energy over DG function spaces. The discrete energy includes standard penalization
terms as well as the DG finite element (DG-FE) numerical derivatives developed recently by Feng,
Lewis, and Neilan in [7]. It is proved that the proposed DR method converges and that the DG-FE

numerical derivatives exhibit a compactness property which is desirable and crucial for applying
the proposed DR method to problems with more complex energy functionals. Numerical tests
are provided on the classical p-Laplace problem to gauge the performance of the proposed DR
method.
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1. Introduction

In this paper we develop a numerical method using totally discontinuous piece-
wise polynomial functions for approximating solutions to the following problem
from the calculus of variations: Find u ∈ W 1,p

g (Ω) such that

J (u) ≤ J (v) ∀v ∈ W 1,p
g (Ω),(1)

where

J (v) =

∫
Ω

f(∇v, v, x) dx(2)

is the energy functional, f : Rd ×R×Ω → R+ is called the energy density, Ω ⊂ Rd

is an open bounded domain, and

W 1,p
g (Ω) := {v ∈ W 1,p(Ω) : u = g on ∂Ω}.

If such a u exists, it is called a minimizer of J over W 1,p
g (Ω) and is written as

u ∈ argmin
v∈W 1,p

g (Ω)

J (v).(3)

Although the calculus of variations is an old field in mathematics, its growth
and boundary have kept expanding because new applications arising from physics,
differential geometry, image processing, materials science, and optimal control (just
to name a few). Those problems are often formulated as calculus of variations
problems, among them are the Brachistochrone problem [5], the minimal surface
problem [6], and the Erickson energy for nematic liquid crystals [11].

Numerically solving those problems means to approximate the exact minimizer
u of J over W 1,p

g (Ω) via a numerical approximation uh. As expected, there are
many methods for constructing an approximate solution uh. The existing numerical
methods can be divided into two categories: the indirect approach and the direct
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approach. The indirect approach is based on the fact that the minimizer u must
satisfy, in some sense, the following Euler-Lagrange equation:

d∑
i=1

∂

∂xi
(fξi(∇u, u, x)) = fu(∇u, u, x) ∀x ∈ Ω.(4)

As equation (4) is a second order PDE in divergence (or conservative) form, it can
be discretized using a variety of methods such as finite difference, finite element,
discontinuous Galerkin and spectral method for constructing an approximate so-
lution uh. This indirect approach is often the preferred approach because of the
wealthy amount of numerical methods available for discretizing PDEs. However,
this approach does have two drawbacks. First, the Euler-Lagrange equation is only
a necessary condition for a minimizer and it may not be a sufficient one. More
information must be known about J in order to determine if the solution of the
Euler-Lagrange equation indeed globally minimizes J . Second, a discretization of
the PDE may lose some important properties of the original energy functional, such
as conservation or dissipation laws. On the other hand, the direct approach seeks
an approximate solution uh by first constructing a discrete energy functional Jh

and then setting

uh ∈ argmin
vh∈Xh

Jh(vh),(5)

where Xh is a finite-dimensional space which approximates W 1,p
g (Ω). Since prob-

lem (5) is equivalent to a minimization problem in RN , a variety of algorithms (or
solvers) can be employed to compute uh. For example, we may minimize Jh by
using a quasi-Newton algorithm or by first deriving the (discrete) Euler-Lagrange
equation to Jh and then solving for uh. The key issue of this approach is how
to construct a “good” discrete energy functional Jh which can ensure the conver-
gence of uh to u. One important advantage of the direct approach is that a “good”
discrete energy functional Jh will automatically preserve key properties of the orig-
inal energy functional J . For example, the discrete variational derivative method
by Furihata and Matsuo for the KdV equation, nonlinear Schrödinger equations,
and the Cahn-Hillard equation [9]; the Variational DGFEM method by Buffa and
Ortner [2] for calculus of variations problems, and the finite element method by
Nochetto et al. [11] for nematic liquid crystals all have such a trait.

Our goal in this paper is to develop a discontinuous Ritz (DR) framework for a
class of variational problems described by (1). Our numerical method belongs to
the direct approach and takes Xh = Vh - the discontinuous Galerkin (DG) space
consisting of totally discontinuous piecewise polynomial functions on a mesh Th of Ω.
We call our method a discontinuous Ritz method because it directly approximates
problem (1). In the special case when

J (v) =
1

2
a(v, v)− F (v),

and a(·, ·) is a symmetric and coercive bilinear form, problem (1) is known as the
Ritz formulation of the following Galerkin (or weak) formulation: find u ∈ V (which
is assumed to be a Hilbert space) such that

a(u, v) = F (v) ∀v ∈ V.

As mentioned earlier, the key issue we face is to construct a “good” discrete ener-
gy functional Jh. Since DG functions are discontinuous across element edges, two
roadblocks arise when creating a discrete energy functional Jh that makes sense


