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A SECOND-ORDER CRANK-NICOLSON METHOD FOR

TIME-FRACTIONAL PDES

MAX GUNZBURGER AND JILU WANG

Abstract. Based on convolution quadrature in time and continuous piecewise linear finite element
approximation in space, a Crank-Nicolson type method is proposed for solving a partial differential
equation involving a fractional time derivative. The method achieves second-order convergence in
time without being corrected at the initial steps. Optimal-order error estimates are derived under

regularity assumptions on the source and initial data but without having to assume regularity of
the solution.
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1. Introduction

Let Ω ⊂ Rd, d ∈ {1, 2, 3}, denote a convex polygonal/polyhedral domain with
boundary ∂Ω, and consider the problem

∂tu(x, t)−∆∂1−α
t u(x, t) = f(x, t) (x, t) ∈ Ω× R+,

∂1−α
t u(x, t) = 0 (x, t) ∈ ∂Ω× R+,

u(x, 0) = v(x) x ∈ Ω,

(1)

where f(x, t) denotes a given source function and v(x) given initial condition. The
operator ∆ : D(∆) → L2(Ω) denotes the Laplacian, defined on the domain D(∆) =
{ϕ ∈ H1

0 (Ω) : ∆ϕ ∈ L2(Ω)}, and ∂1−α
t u denotes the left-sided Caputo fractional

time derivative of order 1− α ∈ (0, 1), defined by (c.f. [11, pp. 91])

∂1−α
t u(x, t) :=

1

Γ(α)

∫ t

0

(t− s)α−1 ∂u(x, s)

∂s
ds,(2)

where Γ(s) :=
∫∞
0

ts−1e−tdt denotes the Euler gamma function. We refer interested
readers to [15, 21] for the regularity of solutions to (1) and its applications.

A number of numerical methods have been developed in the literature for solving
PDE problems involving a fractional time derivative [3, 7, 12, 13, 14, 16, 19], among
which the use of convolution quadrature (CQ) [12, 13] becomes more and more
popular due to its excellent stability property and ease of implementation.

One of the main difficulties encountered when solving fractional evolution PDEs
such as (1) is the low regularity of the solution in time (even with smooth initial da-
ta), which causes severe reduction of the convergence rates of high-order numerical
schemes. In [3], Cuesta et al. overcame this difficulty by correcting the numer-
ical scheme at the starting time step, which yielded second-order convergence of
the numerical solutions based on certain regularity assumptions on the source and
initial data. This idea was extended to the case 0 < α < 1 in [7] and [9], where
second-order BDF and Crank-Nicolson type methods were proposed, respectively,
for solving an equivalent formulation of (1). The schemes generally yield first-order
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convergence of the numerical solutions, but can be restored to second-order by cor-
recting the schemes at several starting time steps. Of course, if a non-uniform mesh
is used for time discretization, then the second-order convergence can be achieved
without correction at the starting steps [16].

The models considered in [3, 7, 9, 16] are closely connected to (1), but they have
different smoothing properties. As a result, the numerical schemes proposed in these
previous works can not be applied directly to problem (1). In this paper, we develop
a Crank-Nicolson scheme for problem (1) based on CQ in time and a continuous
piecewise linear finite element method (FEM) in space. Inspired by [9], we combine
the backward Euler CQ with a θ-type method for approximating ∆∂1−α

t u, and
use the standard backward Euler method for approximating ∂tu. Unlike [9], which
approximates the equation at t = tn − ατ

2 , our method approximates the equation
at t = tn − τ

2 . The numerical method proposed in this paper is the only existing
second-order method for (1) that does not require correction at the starting time
steps.

For given initial data v ∈ L2(Ω) and source f ∈ W 2,1(0, T ;L2(Ω)), we prove the
following error estimate:

∥uh(tn)− Un
h ∥ ≤ Cτ2

(
t−1
n ∥f(0)∥+ ∥f ′(0)∥+

∫ tn

0

∥f ′′(s)∥ds
)
,(3)

where uh and Un
h denote the semidiscrete and fully discrete Galerkin finite element

solutions, respectively. Here and below, for simplicity, we denote uh(t) and f(t) by
uh(x, t) and f(x, t), respectively. The theoretical analysis is based on integral rep-
resentations of uh and Un

h obtained by means of Laplace transform and generating
function, a technique originating in [12, 13] and which proved to be powerful in
[3, 8, 10, 9, 14, 17]. Numerical examples are presented to illustrate the convergence
rate of the proposed method.

The rest of the paper is organized as follows. In Section 2, we present the fully
discrete Crank-Nicolson Galerkin FEM for time-fractional PDE (1) and then state
our main theoretical results. In Section 3, we prove optimal convergence rate for
the approximate solution in time by using its integral representation and estimates
of the resolvent operator. Numerical results are given in Section 4 to illustrate
the theoretical analyses. Throughout this paper, we denote by C, with/without a
subscript, a generic constant independent of h, n, and τ , which could be different
at different occurrences.

2. The main results

In this section, we present the numerical method for approximating the solutions
of (1) and state the main result of this paper.

2.1. Semidiscrete Galerkin FEM. We first only consider the case of discretiza-
tion in space. 2

Let Th be a quasi-uniform triangulation of the domain Ω into d-dimensional
simplexes, denoted by πh, with a mesh size h (0 < h < h0). A continuous piecewise
linear finite element space Xh over the triangulation Th is defined by

Xh = {χh ∈ H1
0 (Ω) : χh|πh

is a linear function, ∀πh ∈ Th}.

Over the finite element space Xh, we define the L2 projection Ph : L2(Ω) → Xh by

(Phφ, χh) = (φ, χh) ∀χh ∈ Xh


