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AN ITERATIVE APPROACH FOR CONSTRUCTING IMMERSED

FINITE ELEMENT SPACES AND APPLICATIONS TO

INTERFACE PROBLEMS
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Abstract. In this paper, an iterative approach for constructing immersed finite element spaces
is developed for various interface conditions of interface problems involving multiple primary vari-

ables. Combining such iteratively constructed immersed finite element spaces with the distributed

Lagrange multiplier/fictitious domain (DLM/FD) method, we further present a new discretization
method that can uniformly solve general interface problems with multiple primary variables and/or

with different governing equations on either side of the interface, including fluid-structure interac-

tion problems. The strengths of the proposed method are shown in the numerical experiments for
Stokes- and Stokes/elliptic interface problems with different types of interface conditions, where,

the optimal or nearly optimal convergence rates are obtained for the velocity variable in H1, L2

and L∞ norms, and at least 1.5-th order convergence for the pressure variable in L2 norm within
few number of iterations. In addition, numerical experiments show that such iterative process

uniformly converges and the number of iteration is independent of mesh ratios and jump ratios.
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1. Introduction

Physical phenomena in a domain consisting of multiple materials or fluids with
an interface are often modeled by differential equations with discontinuous coeffi-
cients which are often called interface problems. Solutions to interface problems are
often required to satisfy jump conditions across the material interfaces in addition
to the pertinent differential equations and the related boundary conditions. In gen-
eral, interface problems require the governing differential equations at the common
interface to share not only the common value of primary variable (Dirichlet-type
interface condition) but also the common flux (Neumann-type interface condition).

Due to its simplicity in mesh generation (one single uniform mesh usually works
well), the body-unfitted mesh method becomes more promising in solving inter-
face problems with moving interfaces possessing sophisticated and irregular shapes.
Among the existing body-unfitted mesh methods, for example, the extended fi-
nite element method (XFEM), also known as a generalized finite element method
(GFEM) in which enrichment functions are added near the interface [32]; unfitted
discontinuous Galerkin methods with penalties [27]; unfitted finite element method
based on the Nitsche’s method in [15] and etc., the immersed finite element (IFE)
method, which was originally proposed in [20, 21] for solving elliptic interface prob-
lems, turns out to be the most accurate and efficient because it can avoid the
smearing of the sharp interface without introducing any local mesh enrichment,
and maintains second-order accuracy by incorporating the known jump conditions
at the interface into the finite element space.
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Since its beginning, the IFE method has been mostly applied to the elliptic
interface problem [21, 23, 16, 17, 1, 18, 19] due to the simplicities of both govern-
ing equation and interface conditions. However, the IFE method still suffers from
applying to the Stokes interface problem because of its sophisticated governing e-
quations (an intrinsic saddle-point structure) and complicated interface conditions
in contrast with the elliptic interface problem, making the stable mixed finite ele-
ment (Stokes-pair) very difficult to be defined and analyzed in the immersed finite
element space. So far, only a mixed IFE Q1/Q0 is designed for the following Stokes
interface problem (1)-(8) [2], however, the discontinuous Galerkin method has to
be relied on in order to stabilize the mixed IFE Q1/Q0 since Q1/Q0 is not a stable
Stokes-pair.

−∇ · (β1∇u1) +∇p1 = f1, in Ω1,(1)

∇ · u1 = 0, in Ω1,(2)

−∇ · (β2∇u2) +∇p2 = f2, in Ω2,(3)

∇ · u2 = 0, in Ω2,(4)

u1 = u2, on Γ,(5)

(β1∇u1 − p1I)n1 + (β2∇u2 − p2I)n2 = w, on Γ,(6)

u1 = 0, on ∂Ω1\Γ,(7)

u2 = 0, on ∂Ω2\Γ,(8)

where, Ω = Ω1 ∪ Ω2 ⊂ Rd as shown in Figure 1, and the immersed interface
Γ = ∂Ω2 is generally a closed curve that divides the domain Ω into an interior
region Ω2 and an exterior region Ω1, and splits an arbitrary function φ ∈ L2(Ω) to
be φ|Ωi = φi (i = 1, 2), where the subscripts 1 and 2 indicate the restrictions to the
corresponding subdomain, n1 and n2 stand for the unit outward normal vectors

on ∂Ω1 and ∂Ω2, respectively. We assume fi ∈
(
L2(Ωi)

)d
, w ∈

(
H1/2(Γ)

)d
. The

coefficient β(x) and the source term f(x) may exhibit discontinuities across Γ, but
have smooth restrictions β1(x), f1(x) in Ω1 and β2(x), f2(x) in Ω2. In addition,
the following regularity properties are held for the Stokes interface problem (1)-(8)
if the interface Γ is of class C2 [31]

u ∈X := (Hs(Ω))d ∩ (H2(Ω1 ∪ Ω2))d, p ∈ Y := L2(Ω) ∩H1(Ω1 ∪ Ω2),(9)

where, 1 < s < 1.5.

Figure 1. Graphical depiction of the domain with an immersed interface.


