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A NUMERICAL METHOD FOR SOLVING THE VARIABLE

COEFFICIENT WAVE EQUATION WITH INTERFACE JUMP

CONDITIONS
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Abstract. Wave equations with interface jump conditions have wide applications in engineering
and science, for example in acoustics, elastodynamics, seismology, and electromagnetics. In this
paper, an efficient non-traditional finite element method with non-body-fitted grids is proposed to
solve variable coefficient wave equations with interface jump conditions. Numerical experiments
show that this method is approximately second order accurate both in the L

∞ norm and L
2 norm

for piecewise smooth solutions.
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1. Introduction

Problems involving wave equations with interfaces have a wide variety of appli-
cations in science and engineering, for example in acoustics, seismology and elec-
tromagnetics. Designing highly effective and computational efficient methods for
these problems is nontrivial.

Before studying the wave interface problems, one needs to study the method for
solving the elliptic interface problem since that is one of the major challenges in the
problem. Therefore we first summarize the past work on elliptic interface problems
below.

For nearly four decades, extensive research has been performed in the area of
numerical solutions of elliptic equations with discontinuous coefficients and singular
sources on Cartesian grids. The choice of uniform Cartesian grids saves the cost
of mesh generation. It started with the pioneering work of Peskin [1] on the first
order accurate immersed boundary method developed to simulate the pattern of
blood flow in the heart.

Also, a great amount of work has been done to use finite difference methods on
elliptic interface problems. The main idea is to use difference schemes and stencils
near the interface to incorporate the jump conditions and interface in the Taylor
expansions. Using finite difference schemes requires the use of high order derivatives
of jump conditions and interface conditions. LeVeque and Li proposed the immersed
interface method for solving elliptic equations with discontinuous coefficients and
singular sources [2]. This method incorporates the interface conditions in both
solution and flux, [u] 6= 0 and [βun] 6= 0, into the finite difference stencil resulting
in second order accuracy. The method produces a linear system that is sparse,
but may not be symmetric or positive definite if there is a jump in the coefficient.
Detailed information about the IIM can be found in [3].

In [4], the matched interface and boundary method (MIB) was proposed to solve
elliptic equations with smooth interfaces. In [5], the MIB method was generalized
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for problems involving sharp-edged interfaces. In [6], the MIB method was gener-
alized for problems involving triple junction points. This method has achieved 2nd
order accuracy in the L∞ norm even for sharp-edged interfaces.

In [7] and [8], the immersed finite element method (IFEM) was developed using
non-body fitted Cartesian meshes for homogeneous jump conditions. The method
was extended to treat non-homogeneous jump conditions in [9]. The partially pe-
nalized IFEM was developed in [10].

Also, there has been a large body of work from the finite volume perspective
for developing high order methods for elliptic equations in complex domains, such
as [11, 12] for two dimensional problems and [13] for three dimensional problems.
Furthermore, Discontinuous Galerkin method [14] can be used to solve elliptic in-
terface problems. Both the mesh and polynomial degree can be adaptively refined
in a remeshing scheme [15]. Recently, the gradient recovery method [30–32] was
introduced for accurate gradient computation.

Some theoretical discussions about interface problems can be found in [16] and
[17].

This paper is based on the Petrov-Galerkin type non-traditional finite element
method for solving elliptic interface problems that was first introduced in [18] and
improved in [19] and [20]. [19] extended the original method to include the case
of sharp edged interfaces with matrix coefficients. This extension improved the
accuracy for sharp edged interfaces from 0.8th order to nearly second order. In
[18] and [19], if the interface hits a grid point exactly, it is perturbed away. [20]
treats this case carefully without perturbation. The second improvement in [20]
is that not only Dirichlet but also Neumann boundary conditions are considered.
The third improvement is that the coefficient matrix data can only be given at the
grid points, not as an analytic function. In [21], the method was extended to three
dimensions. The extension for the elasticity equations can be found in [22]. The
method for multi-domain problems can be found in [23]. Some other extensions
can be found in [24] and [25]. The method has two advantages: first, this method
uses non-body-fitted grid so that the cost of mesh generation can be saved. Second,
compared with other methods the method is easier to implement for complicated
problems with non-homogeneous jump conditions and matrix coefficients.

In [26], the second order accurate immersed interface method is used to solve
the wave equation with interface jump conditions. The wave equation is rewritten
as a first order system. In [27], the correction function method is proposed to solve
the wave equation with interface jump conditions. The result is excellent with 4th
order accuracy. However, the scope of the work is for constant coefficient case only.
On both sides of the interface, it is the Laplacian operator. The scope of our work
in this paper is the variable matrix coefficient case, which has wider applications.

2. Formulation and Numerical Method

2.1. Problem Definition and Weak Formulation. In this paper, we solve the
wave equation with discontinuous variable matrix coefficients along the interface.
Consider a rectangular domain Ω = (xmin, xmax)× (ymin, ymax). Γ is an interface
prescribed by the zero level-set {(x, y) ∈ Ω | φ(x, y) = 0} of a level-set function

φ(x, y). The unit normal vector of Γ is n = ∇φ

|∇φ| pointing from Ω− = {(x, y) ∈
Ω | φ(x, y) < 0} to Ω+ = {(x, y) ∈ Ω | φ(x, y) > 0}, see Figure 1. Now the governing
equation reads

∂2u(x, y, t)

∂t2
−▽ · (β(x, y, t)▽ u(x, y, t)) = f(x, y, t), in (Ω \ Γ)× [0, T ],(1)


