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Abstract. We study and compare fully discrete numerical approximations for the Cahn-Hilliard-
Navier-Stokes (CHNS) system of equations that enforce the divergence constraint in different ways,
one method via penalization in a projection-type splitting scheme, and the other via strongly

divergence-free elements in a fully coupled scheme. We prove a connection between these two
approaches, and test the methods against standard ones with several numerical experiments. The
tests reveal that CHNS system solutions can be efficiently and accurately computed with penalty-
projection methods.
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1. Introduction

The Cahn-Hilliard-Navier-Stokes (CHNS) system of equations is a diffuse inter-
face model for the evolution of two-phase, immiscible, incompressible flows with
uniform mass densities. In contrast to those of sharp interface type, the CHNS
model describes a small-thickness transition region (diffuse interface) between the
two immiscible fluids. This allows for convenient simulation of topological transi-
tions such as pinch-off and reconnection of drops [25], without the need to explicitly
track interfaces. In a domain Ω ⊂ Rd, d=2 or 3, with u representing velocity, p
pressure, µ the chemical potential, and ϕ the phase field variable (taking a value
of 1 in the bulk of one fluid and -1 in the bulk of the other), the CHNS system is
given in non-dimensional form by [25]

ϕt +∇ · (ϕu) = ∇ · (M(ϕ)∇µ),(1)

µ = f ′0(ϕ)− ϵ2∆ϕ,(2)

ut + u · ∇u+∇p− ν∆u = −ϵ
−1

We
ϕ∇µ,(3)

∇ · u = 0,(4)

together with initial conditions u0 and ϕ0, and boundary conditions

u|∂Ω = 0, (no slip, no penetration),

∇ϕ · n|∂Ω = 0, (local equilibrium),

∇µ · n|∂Ω = 0, (no flux).

In the system above, ν is the kinematic viscosity (ν−1 = Re, the Reynolds number),
ϵ > 0 is the transition layer width, We is a modified Weber number (measuring the
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strength of the kinetic and surface energies [21]), M(ϕ) is the mobility function,
which for simplicity we will take as M(ϕ) = 1. The function f0(ϕ) =

1
4 (1− ϕ2)2 =

1
4ϕ

4 − 1
2ϕ

2 + 1
4 is the homogeneous free energy density function. We note that the

energy balance of the system is easily shown to be

∂

∂t

(
1

2
∥u∥2 + ϵ

2We
∥∇ϕ∥2 + ϵ−1

We

∫
Ω

f0(ϕ) dx

)
+

(
ν∥∇u∥2 + ϵ−1

We
∥
√
M(ϕ)∇µ∥2

)
= 0.

By redefining the pressure, we can reformulate the system

ϕt +∇ϕ · u = ∇ · (M(ϕ)∇µ),(5)

µ = f ′0(ϕ)− ϵ2∆ϕ,(6)

ut + u · ∇u+∇p− ν∆u =
ϵ−1

We
µ∇ϕ,(7)

∇ · u = 0.(8)

Numerically solving the CHNS system is known to be very challenging for sev-
eral reasons, including the fact that Navier-Stokes and Cahn-Hilliard equations can
by themselves be difficult. For solutions to the coupled system, there are large
spatial derivatives in the small transition regions causing stiff nonlinear systems.
Moreover, the nonlinear algebraic equations resulting from discretization are large
and strongly coupled, which makes it difficult to even ‘get numbers’ in a reasonable
amount of time. Significant progress was recently made in [15], where a cleverly
devised projection method was developed that decouples the pressure and diver-
gence constraint from the system, but while still providing unconditional stability
and (seemingly) second order temporal accuracy. Moreover, further decoupling of
the system was done in the nonlinear iterations at each timestep, which further de-
coupled the system into easily solvable pieces. This scheme was shown to perform
very well in terms of both accuracy and efficiency on a series of test problems.

The purpose of this paper is to study finite element schemes for (1)-(4) that
more strongly enforce the divergence-constraint than what is usually found in the
literature. In particular, we consider a coupled scheme that strongly enforces the
divergence constraint, and a penalty-projection scheme that uses grad-div stabi-
lization to better enforce the divergence constraint. Recent work in [10, 18, 22] has
shown that the error caused in weak enforcement of the divergence constraint used
by typical finite element methods for fluid simulations (e.g., using Taylor-Hood ele-
ments) is exacerbated when the momentum equation forcing has a large irrotational
component [20]. Considering the CHNS system above, the forcing of the momen-

tum equation (3) is observed to be either − ϵ−1

We ϕ∇µ or ϵ−1

We µ∇ϕ, depending on the
definition of the pressure. Since ϵ is small, we can expect the forcing to be large
in general, especially in the diffuse interface region. Moreover, since |ϕ| ≈ 1 except
in transition regions, we can expect the forcing the be nearly irrotational in bulk
flow regions. Thus, the CHNS system seems to fit into a class of problems where
stronger enforcement of the divergence constraint can significantly help solution
accuracy.

There are many ways of reducing the effect of poor divergence-constraint enforce-
ment in discretizations, including using point-wise divergence-free velocity-pressure
elements (e.g., [20, 32, 2, 26, 13, 14, 8]) and using grad-div stabilization. Point-wise
divergence-free elements completely eliminate the problem but come with difficul-
ties such as larger (and discontinuous) pressure spaces, restrictive mesh conditions,


