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Abstract. Partial differential equations (PDE) often involve parameters, such as viscosity or
density. An analysis of the PDE may involve considering a large range of parameter values, as
occurs in uncertainty quantification, control and optimization, inference, and several statistical
techniques. The solution for even a single case may be quite expensive; whereas parallel computing

may be applied, this reduces the total elapsed time but not the total computational effort. In the
case of flows governed by the Navier-Stokes equations, a method has been devised for computing
an ensemble of solutions. Recently, a reduced-order model derived from a proper orthogonal

decomposition (POD) approach was incorporated into a first-order accurate in time version of the
ensemble algorithm. In this work, we expand on that work by incorporating the POD reduced
order model into a second-order accurate ensemble algorithm. Stability and convergence results
for this method are updated to account for the POD/ROM approach. Numerical experiments

illustrate the accuracy and efficiency of the new approach.
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1. Introduction

In science and engineering, mathematical models are utilized to understand and
predict the behavior of complex systems. Two common input data/parameters for
these types of models include forcing terms and initial conditions. Often, for any
number of reasons, there is a degree of uncertainty involved with the specification
of such inputs. In order to obtain an accurate model we must incorporate such
uncertainties into the governing equations and quantify their effects on the outputs
of the simulation.

In this uncertainty quantification setting, one needs to determine many realiza-
tions of the outputs of the simulation in order to determine accurate statistical
information about those outputs. A similar need occurs in other settings such as
inference, optimization, and control and the need to determine solution ensembles
arising in many applications, e.g., weather forecasting and turbulence modeling.
Thus, in this work, we are interested in computing ensembles of solutions for the
Navier-Stokes equations (NSE) with uncertainty present in the initial conditions
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and body forces. Specifically, for j = 1, . . . , J , we have

(1)


uj
t + uj · ∇uj − ν△uj +∇pj = f j(x, t) ∀x ∈ Ω× (0, T ]

∇ · uj = 0 ∀x ∈ Ω× (0, T ]

uj = 0 ∀x ∈ ∂Ω× (0, T ]

uj(x, 0) = uj,0(x) ∀x ∈ Ω,

where Ω ⊂ Rd, d = 2, 3, is an open regular domain. In most settings, in order
to guarantee a desired accuracy level in the outputs, a fine spatial resolution is
usually required, which renders each realization to be computationally intensive.
Traditionally, the simulation for each ensemble member is treated as a separate
problem; therefore the focus has been to cut down on the total number of real-
izations needed. However, in recent works [11, 12, 13, 20], new algorithms were
designed that allow for the realizations to be computed simultaneously at each
time step. In those papers, the focus has been on creating algorithms which allow
for the same linear system to be used for all right-hand sides. Hence, the need to
solve a different linear system for each right-hand side is reduced to solving the a
single system with many different right-hand sides. This is a well studied problem
for which efficient block iterative methods already exist. A few examples of these
include block CG [2], block QMR [3], and block GMRES [4].

The next natural step to take to further improve upon the efficiency of these
ensemble algorithms is the introduction of reduced-order modeling (ROM) tech-
niques. Specifically, we are interested in the implementation of the proper orthog-
onal decomposition (POD) approach into the ensemble framework. POD works by
generally extracting from highly accurate numerical simulations or experimental
data the most energetic modes in a given system.

One can then project the original problem onto these POD modes to obtain the
Galerkin proper orthogonal decomposition (POD-G-ROM) approximation to the
original problem. It has been shown for laminar flows [1, 10] that it is possible
to obtain a good approximation with few POD modes, hence the corresponding
POD-G-ROM only requires the solution of a small linear system. Recently, in
[6], a POD-G-ROM ensemble algorithm based on the first-order accurate in time
ensemble algorithm first introduced in [13] was developed. However, in applications
that require long-term time integration, such as climate and ocean forecasting,
higher-order methods are highly desirable. For this reason, in this paper we expand
on the work of [6] by introducing the POD method into the second-order ensemble
algorithm introduced in [11].

2. Notation and preliminaries

We denote by ∥ · ∥ and (·, ·) the L2(Ω) norm and inner product, respectively,
and by ∥ · ∥Lp and ∥ · ∥Wk

p
the Lp(Ω) and Sobolev W k

p (Ω) norms, respectively.

Hk(Ω) = W k
2 (Ω) with norm ∥ · ∥k. For a function v(x, t) that is well defined on

Ω× [0, T ], we define the norms

|||v|||2,s :=
(∫ T

0

∥v(·, t)∥2sdt
) 1

2

and ∥|v|||∞,s := ess sup[0,T ]∥v(·, t)∥s.

The space H−1(Ω) denotes the dual space of bounded linear functionals defined on
H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}; this space is equipped with the norm

∥f∥−1 = sup
0̸=v∈X

(f, v)

∥∇v∥
∀f ∈ H−1(Ω).


