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Abstract. We consider a problem of recovering the time-dependent diffusion coefficient in a
parabolic system. To ensure uniqueness the system is constrained by the integral of the solution

at all times. This problem has applications in geology where the parabolic equation models the
accumulation and diffusion of argon in micas. Argon is generated by the decay of potassium
and the diffusion is thermally activated. We introduce a time discretization, on which we base an
application of Rothe’s method to prove existence of solutions. The numerical scheme corresponding

to the semi-discretization exhibits convergence that is consistent with that in Euler’s method.
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1. Introduction

Suppose Ω is a bounded domain in Rd with a smooth boundary. While in general
we consider d ≥ 1, the cases d = 2 and d = 3 are the most relevant for applications
in geology. Let T > 0 and denote ΩT = Ω × (0, T ] and ΓT = ∂Ω × (0, T ]. We
consider an inverse problem for the following system:

ut − c(t)∆u = s(t), (x, t) ∈ ΩT ,(1)

u = 0, (x, t) ∈ ΓT ,(2)

u(x, 0) = u0(x), x ∈ Ω.(3)

The problem is as follows: given the source s(t) and the initial condition u0(x),
we seek the coefficient c(t). As stated, the problem admits multiple solutions. To
ensure unique solvability we impose an additional constraint for the integral of the
solution with respect to the space variable, namely

(4)

∫
Ω

u(x, t) dx = µ(t), t ∈ (0, T ],

where the function µ(t) is also given.
The equations in system (1)-(3) arise as a model for the diffusion of 40Ar pro-

duced by radioactive decay of 40K. This isotope is found in mica that is a silicate
mineral with nearly perfect basal cleavage. This property renders micas highly
amenable to in situ analyses in a geology laboratory setting, in which the concen-
trations for both 40Ar and 39Ar, a proxy for 40K, can be measured. We summarize
the description of the model as found in [8]. In this model, the function u(x, t)
corresponds to the concentration of argon, which diffuses in the crystalline lattice
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with a thermally activated rate, and satisfies equation (1). The specific dependence
of the diffusion coefficient c(t) on temperature T (t) is given by

c(t) = D0e
−E/RT (t).

Here D0, E, and R are parameters with experimentally determined or empirically
postulated values. We are interested in recovering c(t) since this function gives
us the thermal history that the sample underwent. The thermal history in turn
provides the exhumation history, i.e., the distance to surface as a function of time,
due to the proxy relationship between the depth and the temperature: the sample
can be assumed to cool as it rises to the surface with an almost linear rate of 30◦C
per km for a certain range of depths.

When a crystal is formed, it is natural to assume that the initial concentration
of potassium is constant in space. Following crystallization, potassium decays with
the exponential rate λK to either 40Ar or 40Ca. We denote by fAr the fraction
of decays that yield 40Ar (fAr ≈ 10.9%). We note that, in the model with no
diffusion, i.e., in the case of the ordinary differential equation, the age of a sample
is determined using the formula

A(u, v) =
1

λK
ln

(
1 +

1

fAr

u

v

)
,

where u and v are the concentrations of the daughter and parent isotopes, respec-
tively. Consequently, only the ratio u/v is relevant and, without loss of generality,
we can take the initial concentration of 40K to be unity. Since potassium is weakly
chemically bonded in the lattice, its concentration remains constant in space. As
a product of 40K decay, argon is generated at the rate s(t) = λKfAre

−λKt, which
appears as the source term in equation (1). In a slight generalization of this model,
which does not affect our analysis, we can consider a source term that depends both
on the space variable x and on time t. This generalization is justified, for example,
when potassium has a known non-constant initial concentration g(x). In this case,
the source term has the product representation s(t)g(x). Argon, being chemically
inert, tends to have negligible concentration at the time of crystallization, which
results in the initial condition u0 = 0 in (3).

Next, we provide a motivation for the integral constraint (4). In addition to the
aforementioned in situ analyses, which are essentially spot measurements of the
concentration, bulk age measurement is another popular method of estimating the
age of a sample. This method involves crushing it to obtain a single measurement of
the age. The bulk age corresponds to the integral µ(t) of the solution in (4). Eusden
and Lux reported in [2] the bulk age data they obtained for samples collected on the
slopes of Mount Washington, New Hampshire. These geologists observed that the
mica ages increase progressively from the bottom to the top of the mountain and
used them to estimate the exhumation rate. These data afford an interpretation of
the geological history for these samples that possibly included upward movement
with similar temperature regimes in the relevant temperature range that was fol-
lowed by erosion or another event that exposed the samples along the slope with
similar histories but with different starting times of their development.

We illustrate this scenario in Figure 1 and note that the problem we are consider-
ing presently involves three assumptions, namely, we suppose that (1) the samples
followed the same temperature history but with different starting points in time;
(2) there are samples available with any starting point between now and the age of
the oldest sample; and (3) the exact ages of the samples, e.g., the times of crystal-
lization, are known. The first of these assumptions is not unrealistic. The second


