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A GLIMPSE ON FOURIER ANALYSIS: THIRD STAGE
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Dedicated to Professor William J. Layton on the occasion of his 60th birthday

Abstract. The third stage of Fourier analysis is considered herein. A generalized Fourier series
is considered with real valued, locally integrable functions.
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The third stage of Fourier Analysis is concerned with generalized Fourier series
of the form

∞
∑

k=1

ak exp{ifk(t)},(1)

in which ak ∈ C, k ≥ 1, while fk(t) : R → R, k ≥ 1, are real valued functions, at
least locally integrable on R: fk ∈ L1

loc(R,R).
The first stage and the second correspond to the choice of linear fk(t) = λkt,

λk ∈ R, leading to the periodic functions when λk = kω, ω > 0, k ≥ 0, and to the
Bohr almost periodic functions when λk ∈ R are arbitrary.

Only for nonlinear fk(t) one can obtain generalized Fourier series characterizing
oscillatory functions, of a more general nature than those in the first of second
stages.

A tool helping us to construct series like (1) is the Poincaré mean value of a
function, on the real line R. The formula used by Poincaré (Nouvelles Méthodes de

la Mécanique Céleste, 1892-3) is

M{f} = lim
x→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t)dt,(2)

with f : R − C a locally integrable function for which the limit exists.
All classes/spaces of almost periodic functions (Bohr, Stepanov, Besicovitch)

consist of elements for which the mean value in (2) exists (finite!).
The following formula, as noticed by Poincare, is valued for λ ∈ R:

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp{iλt}dt =

{

1, λ = 0

0, λ 6= 0.
(3)

Formula (3) is sort of an orthogonality condition, since it implies

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp{(λk − λj)t}dt =

{

1, j = k

0, j 6= k.
(4)

where {λk : k ≥ 1} ⊂ R is a sequence with distinct terms.
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In order to construct series like (1), it appears possible to obtain solutions, if
any, of the functional equation in λ(t),

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp{iλ(t)}dt =

{

1, λ(t) = 0

0, λ(t) 6= 0.
(5)

with λ(t) real valued and locally integrable on R.
We have, so far, examples of function classes/spaces providing solutions to (5),

infinitely many. The first space appears to be due to V.F. Osipov, in the book Al-

most Periodic Functions of Bohr-Fresnel (Russian), University of Sankt Petersburg
Press, 1992, who has constructed such a space, in which case

λk(t) = αt2 + µt

α = const. ∈ R, k ≥ 1. Osipov’s construction, according to his statement, has
been inspired by a seminal paper of N. Wiener (Acta Mathematica, vol. 55, 1930),
to whom the Fresnel waves, w(t) = exp{i(αt2 + µt)}, are attributed. Using these
waves, Osipov constructed this space, called by him the space of a.p. functions of
Bohr-Fresnel.

The functions in this space, obviously of oscillatory type, correspond to general-
ized Fourier series of the form

∞
∑

k=1

ak exp{i(αt
2 + λkt)},(6)

with α depending on the function to be represented by (6) a real number and
λk ∈ R, k ≥ 1, distinct.

The Parseval equation holds
∞
∑

k=1

|fk|
2 = lim

ℓ→∞
(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt,(7)

where

f(t) ∼

∞
∑

k=1

fk exp{i(αt
2 + λkt)},(8)

and

fk = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t) exp{−i(αt2 + λkt)}dt, k ≥ 1,(9)

Other properties for the Bohr-Fresnel functions hold true, similar to those en-
countered for the Bohr almost periodic function: an example is the approximation
(uniformly on R) of these functions by generalized trigonometric polynomials with
exponents in the class of functions of the form αt2 +µt, µ ∈ R (each taking a finite
number of values).

The second space of generalized oscillatory functions has been constructed by Ch.
Zhang (J. Fourier Analysis, vol. 12(2006); also IEEE Trans. AC, vol. 49(2004)).
The construction is reproduced in one of our papers [3] and relies on the properties
of a function algebra whose element are generalized polynomials of the form

λk(t) =

k
∑

j=1

cjt
αj , t ≥ 0,(10)

where cj ∈ C, j = 1, 2, ..., k, and λk(t) of the form (10), cj ∈ C, α1 > ... > αk > 0,
k ≥ 1.


