INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 15, Number 4-5, Pages 520–523

© 2018 Institute for Scientific Computing and Information

A GLIMPSE ON FOURIER ANALYSIS: THIRD STAGE

CONSTANTIN CORDUNEANU

(Communicated by L. Rebholz)

Dedicated to Professor William J. Layton on the occasion of his 60th birthday

Abstract. The third stage of Fourier analysis is considered herein. A generalized Fourier series is considered with real valued, locally integrable functions.

Key words. Fourier analysis, third stage

The **third** stage of Fourier Analysis is concerned with generalized Fourier series of the form

(1)
$$\sum_{k=1}^{\infty} a_k \exp\{if_k(t)\},\$$

in which $a_k \in C$, $k \ge 1$, while $f_k(t) : R \to R$, $k \ge 1$, are real valued functions, at least locally integrable on R: $f_k \in L^1_{loc}(R, R)$.

The first stage and the second correspond to the choice of linear $f_k(t) = \lambda_k t$, $\lambda_k \in R$, leading to the periodic functions when $\lambda_k = k\omega$, $\omega > 0$, $k \ge 0$, and to the Bohr almost periodic functions when $\lambda_k \in R$ are arbitrary.

Only for nonlinear $f_k(t)$ one can obtain generalized Fourier series characterizing oscillatory functions, of a more general nature than those in the first of second stages.

A tool helping us to construct series like (1) is the *Poincaré mean value* of a function, on the real line R. The formula used by Poincaré (*Nouvelles Méthodes de la Mécanique Céleste*, 1892-3) is

(2)
$$M\{f\} = \lim_{x \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} f(t) \mathrm{dt},$$

with f: R - C a locally integrable function for which the limit exists.

All classes/spaces of almost periodic functions (Bohr, Stepanov, Besicovitch) consist of elements for which the mean value in (2) exists (finite!).

The following formula, as noticed by Poincare, is valued for $\lambda \in R$:

(3)
$$\lim_{\ell \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} \exp\{i\lambda t\} \mathrm{dt} = \begin{cases} 1, & \lambda = 0\\ 0, & \lambda \neq 0. \end{cases}$$

Formula (3) is sort of an orthogonality condition, since it implies

(4)
$$\lim_{\ell \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} \exp\{(\lambda_k - \lambda_j)t\} dt = \begin{cases} 1, & j = k \\ 0, & j \neq k. \end{cases}$$

where $\{\lambda_k : k \ge 1\} \subset R$ is a sequence with distinct terms.

Received by the editors December 1, 2016.

²⁰⁰⁰ Mathematics Subject Classification. 42XX.

In order to construct series like (1), it appears possible to obtain solutions, if any, of the functional equation in $\lambda(t)$,

(5)
$$\lim_{\ell \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} \exp\{i\lambda(t)\} dt = \begin{cases} 1, & \lambda(t) = 0\\ 0, & \lambda(t) \neq 0. \end{cases}$$

with $\lambda(t)$ real valued and locally integrable on R.

We have, so far, examples of function classes/spaces providing solutions to (5), infinitely many. The *first* space appears to be due to V.F. Osipov, in the book *Almost Periodic Functions of Bohr-Fresnel* (Russian), University of Sankt Petersburg Press, 1992, who has constructed such a space, in which case

$$\lambda_k(t) = \alpha t^2 + \mu t$$

 $\alpha = \text{const.} \in R, k \geq 1$. Osipov's construction, according to his statement, has been inspired by a seminal paper of N. Wiener (Acta Mathematica, vol. 55, 1930), to whom the Fresnel waves, $w(t) = \exp\{i(\alpha t^2 + \mu t)\}$, are attributed. Using these waves, Osipov constructed this space, called by him the space of a.p. functions of Bohr-Fresnel.

The functions in this space, obviously of oscillatory type, correspond to generalized Fourier series of the form

(6)
$$\sum_{k=1}^{\infty} a_k \exp\{i(\alpha t^2 + \lambda_k t)\},\$$

with α depending on the function to be represented by (6) a real number and $\lambda_k \in R, k \geq 1$, distinct.

The Parseval equation holds

(7)
$$\sum_{k=1}^{\infty} |f_k|^2 = \lim_{\ell \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} |f(t)|^2 \mathrm{dt},$$

where

(8)
$$f(t) \sim \sum_{k=1}^{\infty} f_k \exp\{i(\alpha t^2 + \lambda_k t)\},$$

and

(9)
$$f_k = \lim_{\ell \to \infty} (2\ell)^{-1} \int_{-\ell}^{\ell} f(t) \exp\{-i(\alpha t^2 + \lambda_k t)\} \mathrm{d}t, \ k \ge 1,$$

Other properties for the Bohr-Fresnel functions hold true, similar to those encountered for the Bohr almost periodic function: an example is the approximation (uniformly on R) of these functions by generalized trigonometric polynomials with exponents in the class of functions of the form $\alpha t^2 + \mu t$, $\mu \in R$ (each taking a finite number of values).

The *second* space of generalized oscillatory functions has been constructed by Ch. Zhang (J. Fourier Analysis, vol. 12(2006); also IEEE Trans. AC, vol. 49(2004)). The construction is reproduced in one of our papers [3] and relies on the properties of a function algebra whose element are generalized polynomials of the form

(10)
$$\lambda_k(t) = \sum_{j=1}^k c_j t^{\alpha_j}, \ t \ge 0,$$

where $c_j \in C$, j = 1, 2, ..., k, and $\lambda_k(t)$ of the form (10), $c_j \in \mathbb{C}$, $\alpha_1 > ... > \alpha_k > 0$, $k \ge 1$.