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Abstract. A statistical turbulence model is proposed for ensemble calculations with two fluids
coupled across a flat interface, motivated by atmosphere-ocean interaction. For applications, like
climate research, the response of an equilibrium climate state to variations in forcings is important
to interrogate predictive capabilities of simulations. The method proposed here focuses on the
computation of the ensemble mean-flow fluid velocities. In particular, a closure model is used for
the Reynolds stresses that accounts for the fluid behavior at the interface. The model is shown to
converge at long times to statistical equilibrium and an analogous, discrete result is shown for two
numerical methods. Some matrix assembly costs are reduced with this approach. Computations
are performed with monolithic (implicit) and partitioned coupling of the fluid velocities; the former
being too expensive for practical computing, but providing a point of comparison to see the effect
of partitioning on the ensemble statistics. It is observed that the partitioned methods reproduce
the mean-flow behavior well, but may introduce some long-time statistical bias.
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1. Introduction

Ensemble calculations with global circulation models (GCMs) are an impor-
tant component of climate variability studies. Many long-time integrations are
performed to assess the average near-surface temperature change in response to
changes in forcings for the climate system at radiative equilibrium. There are mul-
tiple sources of uncertainty in calculated responses. For a given computational
model, some studies focus on parametric uncertainty (see [8], 9.2.2.2). One way
to mitigate cost is to apply statistical models for simulation responses that require
only a modest number of uncertain parameters and ensemble members, for example
in perturbed physics ensemble methods (e.g. [22]). Given a moderate number of en-
sembles, this paper investigates another possible cost-reduction measure. Based on
the work of Jiang, Kaya and Layton [10], a method is proposed herein to compute
ensemble-mean flow states efficiently, by using a conventional (statistical) turbu-
lence model (CTM). CTM models (like RANS [1] or k − ǫ [20]) seek to reduce the
number of degrees of freedom required to resolve mean fluid behavior. The method
has the additional benefit of reducing some matrix-assembly costs for the ensemble
computations.

The focus is on atmosphere-ocean interaction (AOI). A key aspect of many AOI
models is to avoid resolving the boundary layers, instead relying on boundary con-
ditions that conserve fluxes across the layers. In order to reduce the problem down
but retain this key mathematical detail, Connors, Howell and Layton investigated
a model of two incompressible fluids coupled across a flat interface [5]. A similar
model is adopted here, since it provides a convenient setting in which to incorporate
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the work of Jiang, Kaya and Layton. However, it is necessary to account for the
special dynamics in AOI introduced by the differences in vertical versus horizontal
scaling, and also by the interface boundary conditions.

1.1. A conventional turbulence model for coupled fluids. Consider an en-
semble of velocities and pressures for flows in the atmosphere and ocean (domains
ΩA,ΩO ⊂ R

d, d = 2, 3, respectively), satisfying

∂tuj −DA(uj) + uj · ∇uj +∇pj = fAj on ΩA × (0, T ],(1)

∇ · uj = 0 on ΩA × (0, T ],(2)

uj(x, t = 0) = u0
j(x) on ΩA,(3)

∂tvj −DO(vj) + vj · ∇vj +∇qj = fOj on ΩO × (0, T ],(4)

∇ · vj = 0 on ΩO × (0, T ],(5)

vj(x, t = 0) = v0
j (x) on ΩO.(6)

Here, DA(uj) and DO(vj) are viscosity terms. Let D(u) represent any d×d tensor
or matrix, with entries D(u)ij , 1 ≤ i, j ≤ d. Define a decomposition by

(7)

D(u) = D(u)H +D(u)⊥,

(
D(u)H

)
ij
=

{
(D(u))ij for i = 1, . . . , d− 1, j = 1, . . . , d,

0, otherwise

(
D(u)⊥

)
ij
=

{
(D(u))ij for i = d, j = 1, . . . , d,

0, otherwise

Now let D(u) = (∇u+∇uT )/2 be specifically the viscous part of the Cauchy stress
tensor. The diffusion terms are decomposed into horizontal and vertical terms:

DA(uj) = 2∇ ·
(
νA

HD(uj)
H + νA

⊥D(uj)
⊥
)
,(8)

DO(vj) = 2∇ ·
(
νO

HD(vj)
H + νO

⊥D(vj)
⊥
)
.(9)

The constants νA
H > 0 and νO

H > 0 are horizontal diffusion parameters, whereas
νA

⊥ > 0 and νO
⊥ > 0 are (constant) vertical diffusion parameters. The horizontal

scale is much larger than the vertical scale for atmosphere-ocean simulations. Due
to the nature of flow features that result from this scale discrepancy, it is typi-
cal in practice to treat horizontal and vertical diffusion processes differently (see,
e.g. [21, 23]). While many other aspects of typical atmosphere-ocean models are
not included here, the above model retains the necessary mathematical features for
the investigation in this paper. Boundary conditions are discussed later.

We assume that j = 1, . . . , J and define the ensemble average, say a, of any
collection of J objects aj by

(10) a ≡< aj >≡
1

J

J∑

j=1

aj .

A model for the ensemble-averaged mean flow is

∂tu−DA(u) + u · ∇u+∇p−∇ · R(u,u) = fA on ΩA × (0, T ],(11)

∇ · u = 0 on ΩA × (0, T ],(12)

u(x, t = 0) = u0(x) on ΩA,(13)

∂tv −DO(v) + v · ∇v +∇q −∇ ·R(v,v) = fO on ΩO × (0, T ],(14)

∇ · v = 0 on ΩO × (0, T ],(15)

v(x, t = 0) = v0(x) on ΩO,(16)


