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OPTIMAL ORDER CONVERGENCE IMPLIES NUMERICAL

SMOOTHNESS II: THE PULLBACK POLYNOMIAL CASE

SO–HSIANG CHOU AND TONG SUN

Abstract. A piecewise smooth numerical approximation should be in some sense as smooth as its
target function in order to have the optimal order of approximation measured in Sobolev norms.
In the context of discontinuous finite element approximation, that means the shape function needs
to be numerically smooth in the interiors as well as across the interfaces of elements. In previous
papers [2, 8] we defined the concept of numerical smoothness and stated the principle: numerical
smoothness is necessary for optimal order convergence. We proved this principle for discontinuous
piecewise polynomials on Rn

, 1 ≤ n ≤ 3. In this paper, we generalize it to include discontinuous
piecewise non-polynomial functions, e.g., rational functions, on quadrilateral subdivisions whose
pullbacks are polynomials such as bilinears, bicubics and so on.
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1. Introduction

Consider the problem of approximating a function u defined on a domain Ω in
Rn by a sequence of numerical solutions {uh} that are defined on subdivisions of Ω
parametrized by the maximum mesh size h. The target function u may be the exact
solution of a partial differential equation, and the sequence, discontinuous piecewise
polynomials from a discontinuous Galerkin or finite volume method [6, 7], or post-
processed finite element solutions to achieve superconvergence [11]. Now suppose
that u is in W p+1

s (Ω) (standard notation for Sobolev spaces here, supindex for the
order of derivative and subindex for the Ls-based space) and that an optimal order
approximation

(1) ||u− uh||Ls(Ω) = O(hp+1),

holds, we would like to know what kind of smoothness uh must have. For this
purpose we defined across the interface smoothness in [2, 8] for 1 ≤ n ≤ 3 and in
particular for n = 2 it is as follows.

Definition 1.1. Interface Numerical Smoothness. Let {Qh} be a family of trian-
gulations or quadriangulation (by quadrilaterals) of Ω ⊂ Rn. Let Wh be a function
space such that

Wh ⊂ {v : Ω → R : v|κ ∈ Cp+1(κ̄), κ ∈ Qh}, dim Wh < ∞.

Let {xi}N
◦

i=1 be the set of all midpoints of interior edges. Then, uh ∈ Wh is said to
be interface W p+1

s (Ω)-smooth, s ≥ 1, if there is a constant Cs > 0, independent of
h and uh, such that

(2)

N◦

∑

i=1

h2‖Di‖
s ≤ Cs,
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and interface W p+1
∞ (Ω)-smooth, if there exists a constant C∞ > 0, independent of

h and uh, such that

(3) max
1≤i≤N◦

‖Di‖ ≤ C∞,

where the components of Di are the scaled jumps J
(α)
i of partial derivatives at xi

(4) Dα
i = J

(α)
i /(hp+1−|α|), J

(α)
i := J∂αuhKxi

, |α| = k, 0 ≤ k ≤ p.

Two important examples of Wh are piecewise polynomial space and space of
piecewise continuously differentiable functions whose pre-images under bilinear
transformation are polynomial. It is most instructive just by looking at the n = 1
case, and see that several natural conditions for optimal convergence are already
included, e.g., the scaled functional value |D0

i | ≤ C for all i in the case of k = 0,
and at the other end in the case of k = p that |Dp

i | ≤ C or (2) with s = 1 implies

the piecewise constant function dpuh

dxp has bounded variation, when Wh is the space
of piecewise polynomials of degree at most p.

Intuitively, the smoothness of a numerical solution uh ∈ Wh should be measured
by the boundedness of partial derivatives ∂αuh. On an element κ ∈ Qh, by Taylor
expansion around any point xm in κ̄, e.g., the center of κ or a point on the boundary
of κ using one-sided derivatives, we see that boundedness of the quantities ∂αuh(xm)
would be sufficient to guarantee the interior smoothness, i.e., there exists a constant
M > 0, independent of h, such that

(5) |∂αuh(xm)| ≤ M, ∀ |α| = k, 0 ≤ k ≤ p.

On the other hand, intuitively the smoothness across the interface boundary of an

element should be measured by the jumps of partials J
(α)
i . The crucial part of

Definition 1.1 is to point out one should use instead the scaled jump quantities Dα
i

in (4). Notice that this definition does not involve any target solution u. Next, to
give a corresponding interior numerical smoothness we replace the quantity Di by
Fi, the difference between the derivatives of uh and the target u at xm.

Definition 1.2. Interior Numerical Smoothness. Let u ∈ Cp+1(Ω),Ω ⊂ R2 and
let uh be as in Def. 1.1 and let {xi}Ni=1 be a collection of points xi ∈ κi ∈ Qh, 1 ≤
i ≤ N , where N is the number of elements in Qh. Then, uh is said to be interior
W p+1

s (Ω)-smooth, s ≥ 1, if there is a constant Cs, independent of h and uh, such
that

(6)

N
∑

i=1

h2‖Fi‖
s ≤ Cs,

and interior W p+1
∞ (Ω)-smooth, if there exists a constant C∞ independent of h and

uh such that

(7) max
1≤i≤NT

‖Fi‖ ≤ C∞,

where the components of Fi are the scaled differences between partial derivatives

Fα
i = ∂α(u − uh)(xi)/(h

p+1−|α|), |α| = k, 0 ≤ k ≤ p.

The main result that states optimal order convergence implies numerical smooth-
ness is proved in Theorems 3.1 and 3.2. In particular, as a byproduct we have the
following simultaneous approximation result: If

‖u− uh‖L∞(Ω) ≤ Chp+1|u|Wp+1
∞

,


