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A FRACTIONAL STOKES EQUATION AND ITS SPECTRAL

APPROXIMATION

SHIMIN LIN, MEJDI AZAÏEZ, AND CHUANJU XU†

Abstract. In this paper, we study the well-posedness of a fractional Stokes equation and its
numerical solution. We first establish the well-posedness of the weak problem by suitably define the
fractional Laplacian operator and associated functional spaces. The existence and uniqueness of
the weak solution is proved by using the classical saddle-point theory. Then, based on the proposed
variational framework, we construct an efficient spectral method for numerical approximations of
the weak solution. The main contribution of this work are threefold: 1) a theoretical framework
for the variational solutions of the fractional Stokes equation; 2) an efficient spectral method
for solving the weak problem, together with a detailed numerical analysis providing useful error
estimates for the approximative solution; 3) a fast implementation technique for the proposed
method and investigation of the discrete system. Finally, some numerical experiments are carried
out to confirm the theoretical results.
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1. Introduction

Fractional partial differential equations(FPDEs) are generalizations of the integer-
order models, based on fractional calculus. As a useful tool in modelling the phe-
nomenon related to nonlocality and memory effect, the FPDEs have been attracting
increasing attention in recent years. They are now finding many applications in a
broad range of fields such as control theory, biology, electrochemical processes, vis-
coelastic materials, polymer, finance, and etc; see, e.g.,[2, 3, 4, 5, 6, 16, 19, 21, 22,
31, 32, 33] and the references therein. In particular, fractional diffusion equations
have been frequently used to describe the so-called anomalous diffusion phenome-
non; see, e.g., [12, 15, 17, 35, 37, 38].

In this paper, we will consider sub-diffusion problems of the incompressible flows.
This problem is related to the Navier-Stokes equation with sub-dissipation, which
has been the subject of many research studies in the community of PDE theory.
For example, Katz and Pavlović [20] considered the equations ∂u

∂t + (−∆)αu + u ·

∇u + ∇p = 0, ∇ · u = 0 with the initial condition u(0, x) = u0(x) ∈ C∞
c (R3),

and proved that for this equation the Hausdorff dimension of the singular set at
time of first blow up is at most 5 − 4α and the solution has global regularity in
the critical and subcritical hyper-dissipation regimes α ≥ 5/4. Tao [40] considered
the global Cauchy problem for the same Navier-Stokes equations in R

d, d ≥ 3,
and improved the above-mentioned result in the hyper-dissipation regimes under
a slightly weaker condition. Yu & Zhai [43] investigated the well-posedness of the
fractional Navier-Stokes equations in some supercritical Besov spaces and largest
critical spaces. Xiao et al. [41] proved a general global well-posedness result for the
fractional Navier-Stokes equations in some critical Fourier-Besov spaces.

On the other side, a considerable body of literature has been devoted to study-
ing numerical methods for the FPDEs, it is impossible to give even a very brief
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review here. Nevertheless, we refer to [26] for a review on the recent progress of
high order numerical methods, particularly spectral methods, for the fractional dif-
ferential equations. The main focus of the current paper is to set up a functional
framework for the fractional Stokes equation in bounded domains, and propose a
spectral method for its numerical solutions. As it has been well known for the tra-
ditional Stokes equation, a suitable variational formulation is essential for spectral
methods to be efficient. The suitable weak form relies on the choice of the space
pair for the velocity and pressure. The main contribution of this paper includes:
first, we introduce the velocity and pressure spaces such that the associated saddle
point problem is well-posed; secondly, we construct an efficient spectral method for
numerical approximations of the weak solution. Based on the weak formulation and
the polynomial approximation results in the related Sobolev spaces, we are able to
derive some error estimates. Finally we present an implementation technique of the
algorithm, and some numerical results to confirm the theoretical statements.

The rest of the paper is organized as follows: In the next section we recall some
notations of fractional calculus and list some lemmas which will be used in the
following sections. In Section 3 the fractional Stokes problem is studied and the
well-posedness result is established. Then we propose and analyze in Section 4 a
stable spectral method based on weak formulation, and derive the error estimates
for the numerical solution. In Section 5, we give some implementation details and
present the numerical results to support the theoretical statements. In Section 6,
we present an extension to the fractional Navier-Stokes equations. Some concluding
remarks are given in the final section.

2. Preliminaries

In this section, we present some notations and basic properties of fractional
calculus [1, 13, 34, 24, 36]. which will be used throughout the paper. Let N and
R be the set of positive integers and real numbers respectively, and set N0 :=
{0} ∪ N. Let c be a generic positive constant independent of any functions and of
any discretization parameters. We use the expression A . B (respectively, A & B)
to mean that A ≤ cB (respectively, A ≥ cB), and use the expression A ∼= B to
mean that A . B . A. In all that follows, without lose of generality, we set
Λ = (−1, 1) and Ωd = Λd. The generic points of Ωd is denoted by x = (x1, · · · , xd).
In some specific occurrences, we may use (x, y) to represent the generic points of
Ωd when d = 2 ((x, y, z) when d = 3), and use Ω instead of Ωd to represent the
domain for simplification.

Definition 2.1 (RL fractional integral). Let f(x) be Riemann integrable on (a, b),
−∞ < a < b < ∞. The left-sided and right-sided Riemann-Liouville fractional
integral of order s > 0 are defined by

aI
s
xf(x) :=

1

Γ(s)

∫ x

a

(x− t)s−1f(t) dt, xI
s
b f(x) :=

1

Γ(s)

∫ b

x

(t− x)s−1f(t) dt

respectively, where Γ(·) is the Gamma function.

Definition 2.2 (RL fractional derivative). For a given f(x), the Riemann-Liouville
fractional derivatives aD

s
xf and xD

s
bf of order s > 0 are defined by

aD
s
xf(x) : =

dn

dxn
aI

n−s
x f(x) =

1

Γ(n− s)

dn

dxn

∫ x

a

(x− t)n−s−1f(t) dt, n = ⌈s⌉,


