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Abstract. We introduce an optimization model of the support vector regression with the group
lasso regularization and develop a class of efficient two-step fixed-point proximity algorithms to
solve it numerically. To overcome the difficulty brought by the non-differentiability of the group
lasso regularization term and the loss function in the proposed model, we characterize its solutions

as fixed-points of a nonlinear map defined in terms of the proximity operators of the functions
appearing in the objective function of the model. We then propose a class of two-step fixed-
point algorithms to solve numerically the optimization problem based on the fixed-point equation.
We establish convergence results of the proposed algorithms. Numerical experiments with both

synthetic data and real-world benchmark data are presented to demonstrate the advantages of
the proposed model and algorithms.
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1. Introduction

The support vector machine (SVM) has been widely used in many applications
including text/image recognition [8, 35], face detection [29], bioinformatics [4, 6],
since its introduction in [13]. In general, we could consider SVM in two main
categories [15, 31, 36]: support vector classification (SVC) [16, 18] and support
vector regression (SVR) [2, 32, 33]. The standard ℓ2-norm SVC aims at finding
the best hyperplane that has the largest distance to the nearest points of each
class. It turns out that this hyperplane is determined by a small fraction of the
training points that are called the support vectors. The standard ℓ2-norm SVR
performs in an analogical way. It maximizes the margin from the hyperplane to the
furthest point to get the best fitting hyperplane. Similarly, this hyperplane is also
determined by only a small subset of the training points. In this paper we shall
focus on SVR.

For the purpose of promoting sparsity of the support vectors, the SVM with
the ℓ1-norm regularizer [31, 36, 38] was put forward. It is well received that the
ℓ1-norm regularizer produces sparse solutions [34]. In particular, the ℓ1-SVM has
been proven to be advantageous when there are redundant noise features [38] and
to have shorter training time than the standard ℓ2-SVM [20]. A natural extension
of the ℓ1-norm regularization is the group lasso regularization that could be viewed
as a group-wise ℓ1-norm. It has been shown in [19, 26, 37] that group lasso reg-
ularization overwhelms the ℓ1-norm regularization when the optimal variable has
the group structure. The group lasso regularization performs better when the re-
gression problem has the prior information with group structure [14, 26, 37]. On
the other hand, applications with cluster structure have been observed in practice
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[10, 25]. Therefore, in this paper we shall consider the SVM model with the group
lasso regularization.

The main challenge of solving the SVM model with the group lasso regularization
comes from the non-differentiability of the SVM loss functions and the group lasso
regularization term. A popular technique [9, 11] is to solve a smooth approxima-
tion of the original model instead. However, it may bring an extra approximation
error term and thus we prefer solving the original model rather than a smooth
approximation.

The goal of this paper is to develop numerical algorithms of solving the original
SVR model with the group lasso regularization. Specifically, we shall employ the
techniques of proximity operators to construct a two-step fixed-point proximity
algorithm. We point out that fixed-point proximity algorithms have been popular
in solving non-differentiable optimization models in image processing [21, 22, 27, 28]
and machine learning [1, 23, 24]. We shall first characterize solutions of the non-
differential model as fixed-points of certain nonlinear map defined in terms of the
proximity operator of the convex functions involved in the objective function. We
then employ a matrix splitting technique to derive a class of two-step algorithms
to compute the fixed points.

The rest of this paper is organized as follows. In Section 2, we introduce the
optimization model of the group lasso regularized SVR. In Section 3, we characterize
solutions of the proposed model as the fixed-points of a nonlinear map defined in
terms of the proximity operators of the convex functions appearing in the objective
function. We develop a class of two-step proximity algorithms for computing the
fixed-points and present its convergence analysis in Section 4. We demonstrate the
performance of the proposed model and algorithms in Section 5 through numerical
experiments with both synthetic data and real-world benchmark data. We draw a
conclusion in Section 6.

2. SVR with Group Lasso Regularization

In this section, we shall introduce the model of the SVR with group lasso reg-
ularization. To this end, we first recall the models of the standard ℓ2-norm SVR
(ℓ2-SVR) and the variant ℓ1-norm SVR (ℓ1-SVR).

We start with the notation used throughout this paper. We denote by Rm the
usual m-dimensional Euclidean space and define

Rm+ := {x ∈ Rm : xi ≥ 0}.

For a positive integer m ∈ N, we set Nm := {1, 2, . . . ,m}. The standard inner
product is defined for any x,y ∈ Rm by

⟨x,y⟩ :=
∑
i∈Nm

xiyi.

For p ∈ N2, we define the ℓp norm for x ∈ Rm by

∥x∥p =

(
m∑
i=1

|xi|p
)1/p

.

We next recall the SVR models. Given instances {(xi, yi) : i ∈ Nm} ⊆ Rn × R,
the standard ℓ2-norm soft margin SVR aims at finding the best hyperplane that
has the largest margin to the farthest training points. This leads to the following


