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LINEAR AND QUADRATIC IMMERSED FINITE ELEMENT
METHODS FOR THE MULTI-LAYER POROUS WALL MODEL
FOR CORONARY DRUG-ELUTING STENTS

HUILI ZHANG!, TAO LIN?, AND YANPING LIN3

Abstract. In this paper, we consider a multi-layer porous wall model for coronary drug-eluting
stents that leads to an interface problem whose coefficients have multiple discontinuous points,
and an imperfect contact interface jump condition is imposed at the first discontinuous point
where the stent meets the artery. The existence and uniqueness of the solution to the related
weak problem are established. A linear and a quadratic immersed finite element (IFE) methods
are developed for solving this interface problem. Error estimation is carried out to show that
the proposed IFE methods converge optimally. Numerical examples are presented to demonstrate
features of these IFE methods.
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1. Introduction

It is known that alteration of blood flow due to the narrowing or occlusion of
an artery is one of the most common occurrences in cardiovascular diseases. A
treatment for cardiovascular diseases is alteration of blood flow in which, in order
to hold open and to provide structural stability to the damaged vessel, a drug-
eluting stent (DES) is inserted in the artery. A number of mathematical models
[40, 41, 44] are proposed to simulate the drug transfer in the arterial wall in this
kind of treatment. As is well known that the arterial wall consists of many layers
with different structural and chemical properties [23]. Tt is believed that a better
modeling of the wall structure brings us a more effective description of the drug
release from a DES. One of these complete wall models is the multi-layer wall
model that takes into account the heterogeneous properties of the different layers
constituting the arterial wall. Because the mass dynamics mainly occurs along
the direction normal to the stent’s coating, G. Pontrelli and F. Monte proposed
a simplified one-dimensional (1D) multi-layer porous wall model in [42], see the
illustration in Fig. 1 which is based on Fig. 2 in [42].

First of all, let us review this model briefly. In a general 1D framework, we
consider a set of intervals [a;—1, ], ¢ = 0,1,2,...,n, having thickness I; = a; —a;—1
modeling the drug coating (¢ = 0) and the arterial wall layers (i = 1,2,...,n), as
shown in Fig. 1. At the initial time (¢ = 0), the drug is contained only in the coating
and it is distributed with maximum concentration ug and, subsequently, released
into the arterial wall. Here, and throughout this paper, a mass volume-averaged
concentration u(x,t) is considered.

We know that the metallic strut is impermeable to the drug, so there is no mass
flux passes through the boundary surface at x = a_;1. Thus, the dynamics of the
drug in the coating [c_1, o] should satisfy the following 1D diffusion equation and
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related boundary-initial conditions:
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where Dy is the drug diffusivity, ug the concentration in the coating.
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FIGURE 1. A sketch of the layered wall. ST indicates the metallic
stent strut bearing the polymeric coating, while [a_1, o] means
the polymeric coating. The continuous wall layers are defined by
[@i—1,04], 7 = 1,2,...,n. This illustration is based on Fig. 2 in
[42].

To prolong the drug release time, we need to slow down the drug release rate.
To achieve this goal, a permeable membrane (called topcoat) of permeability p is
placed at the interface (x = ag) between the coating and the arterial wall. Thus,
the mass flux passed through it is continuous while the drug concentration might
have a possible jump. In this case, the mass transfer through the topcoat can be
described by the following second Kedem-Katchalsky equation:
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where, ¢g and ¢; are two constants relevant to the porosity. Hereafter, D; is the
diffusivity of drug and §; denotes for a constant characteristic convection parameter
in[o-1,04],i=1,2,...,n.

Then, we consider the drug transfer in the layers of the arterial wall. In the i-th
layer, the drug transfer obeys the following advection-diffusion-reaction equation
and related initial conditions:
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