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Abstract. We investigate an h-p version of the continuous Petrov-Galerkin method for the
nonlinear Volterra functional integro-differential equations with vanishing delays. We derive h-p
version a priori error estimates in the L2-, H1- and L∞-norms, which are completely explicit

in the local discretization and regularity parameters. Numerical computations supporting the
theoretical results are also presented.
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1. Introduction

We study the numerical solutions for the nonlinear Volterra functional integro-
differential equation (VFIDE) with vanishing delays:

(1)

{
u′(t) = f(t, u(t), u(θ(t))) + (Vu)(t) + (Vθu)(t), t ∈ I := [0, T ],

u(0) = u0,

corresponding to the Volterra integral operators

(Vu)(t) :=
∫ t

0

K1(t, s)G1(s, u(s))ds, (Vθu)(t) :=

∫ θ(t)

0

K2(t, s)G2(s, u(s))ds,

where the delay function θ is subject to the following conditions:
(C1) θ(0) = 0 and θ(t) < t for t > 0,
(C2) θ′(t) ≥ q0 > 0 for all t ∈ I.

We assume that f and Gi with i = 1, 2 are given functions. Moreover, the kernels
K1(t, s) and K2(t, s) are continuous on D := {(t, s) : 0 ≤ s ≤ t, t ∈ I} and
Dθ := {(t, s) : 0 ≤ s ≤ θ(t), t ∈ I}, respectively.

During the past few decades, many numerical methods have been proposed and
analyzed for the VFIDEs. Among those a large number of methods are based on the
h-version approach, which means that the convergence is achieved by decreasing
the size of time steps at a fixed and typically low approximation order. For an
overview of the lower-order methods developed for the VFIDEs, the reader can
refer to monographs [3, 5] and the references therein. In contrast, the higher-
order methods, for example, the p- and h-p version methods employ (varying)
high order approximation polynomials. Particulary, the h-p version method allows
for locally varying time steps and approximation orders, which can significantly
enhance the numerical accuracy. The h-p version continuous and discontinuous
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Galerkin methods were introduced for initial-value problems in [9, 17, 19], for delay
differential equations in [6], for parabolic problems in [10], and for Volterra integro-
differential equations in [4, 8, 18, 20]. Moreover, some other high-order methods,
such as the spectral methods were developed for various Volterra integro-differential
equations with delays; see, e.g., [1, 13, 14, 15, 16, 21]. However, to the best of our
knowledge, there is no work that considers the h-p version Galerkin method for
nonlinear VFIDEs.

The purpose of the current work is to present and analyze an h-p version of
the continuous Petrov-Galerkin (CPG) discretization scheme for the numerical ap-
proximation of the VFIDE (1) with vanishing delays. The Petrov-Galerkin method
allows the trial and test spaces to be different, and it has become powerful tools for
solving many kinds of differential equations (see e.g., [7, 12]). The CPG method
presented in this paper is a hybrid of the continuous and discontinuous Galerkin
methods with respect to time. More precisely, one uses continuous and piecewise
polynomials for the trial spaces, but uses discontinuous and piecewise polynomials
for the test spaces. With such choice of the trial and test spaces, we show that
the CPG scheme defines a unique approximate solution, provided that a certain
condition on the time steps is satisfied (which is completely independent of the
approximation orders). We also describe in detail our implementation for the CPG
scheme according to certain relationship between the delay function θ(t) and nodal
points of the time partition. Moreover, we derive h-p version a priori error esti-
mates that are completely explicit with respect to the local time steps, the local
approximation orders, and the local regularity properties of the exact solution.

The remainder of this paper is organized as follows. In Section 2, we introduce
the h-p version of the CPG method for the VFIDE (1) and prove existence and
uniqueness of approximate solutions. We also give a detailed description of the
computational form of the CPG scheme. In Section 3, we carry out a complete h-p
version error analysis of the CPG method. In Section 4, we present some numerical
experiments to verify the theoretical results. We end the paper with a summary
and discussion in Section 5.

2. The h-p version of continuous Petrov-Galerkin method

In this section, we first introduce the h-p version of the CPG method for the
VFIDE (1). We then show the existence and uniqueness of the approximate solu-
tions. Finally, we discuss the numerical implementation of the CPG scheme.

2.1. Continuous Petrov-Galerkin discretization. Let Th be a partition of the
time interval I given by the points

0 = t0 < t1 < t2 < · · · < tN−1 < tN = T.

We set In = (tn−1, tn) and kn = tn − tn−1 for 1 ≤ n ≤ N . Let k = max
1≤n≤N

{kn}.
Moreover, we assign to each time interval In an approximation order rn ≥ 1 and
introduce the degree vector r = {rn}Nn=1. Then, the tuple (Th, r) is called an h-p
discretization of I. Next, we introduce the h-p version trial and test spaces

Sr,1(Th) = {u ∈ H1(I) : u|In ∈ Prn(In), 1 ≤ n ≤ N}
and

Sr−1,0(Th) = {u ∈ L2(I) : u|In ∈ Prn−1(In), 1 ≤ n ≤ N},
respectively, where Prn(In) denotes the space of polynomials of degree at most rn
on In.


