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A NOVEL ADAPTIVE FINITE VOLUME METHOD FOR

ELLIPTIC EQUATIONS

YANHUI ZHOU AND QINGSONG ZOU

Abstract. In this paper, we propose a novel adaptive finite volume method (AFVM) for elliptic
equations. As a standard adaptive method, a loop of our method involves four steps: Solve →

Estimate → Mark → Refine. The novelty of our method is that we do not have the traditional
“completion” procedure in the Refine step. To guarantee the conformity, a triangular element with
a hanging node is treated as a quadrilateral element, and the corresponding function space consists
of the bilinear functions. The optimal computational complexity of our AFVM is validated by
numerical examples.
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1. Introduction

The finite volume method (FVM) is a popular numerical tool for partial dif-
ferential equations (PDEs), cf. [1, 2, 5, 13–18, 20–22, 24–26, 28, 29, 31–33, 37]. Re-
cently, the adaptive finite volume method (AFVM) attracts a lot of attention,
see [6,8,11,12,19,23,27,30,36]. Especially the a posteriori error estimator has been
studied in many papers, see [36] for the hierarchical type and [6, 11, 12, 23, 27, 30]
the residual type error estimators.

In this paper, we design a novel AFVM for elliptic equations. Unlike the pre-
vious works which pay a lot of attention on the construction of a posteriori error
estimators for the FVM, here we construct our novel adaptive method modifying
the adaptive strategy. It is known that an iteration of a standard adaptive method
involves four steps: Solve → Estimate → Mark → Refine. In particular, in the
Refine step, after having refined the mesh according to the previous marking step,
we should refine more elements to eliminate the so called “hanging nodes”. The
novelty of our method is that we do not have the traditional “completion” pro-
cedure in the Refine step which allow hanging nodes. In order to guarantee the
conformity, a triangular element with one hanging node will not be divided if the
edge with the hanging node is not a base of the triangle. We consider this triangle
with the hanging node as a quadrilateral. We only divide a triangular element has
a hanging node on the base, or has more than one hanging nodes on edges. As a
consequence, our meshes in AFVM consist of hybrid triangular and quadrilateral
elements, to ensure the continuity of our trial function of the finite volume scheme
in the Solve step, we let the trial function on triangular element be constructed
as the linear function and on quadrilateral element (a triangular element with a
hanging node) as the isoparametric bilinear. In other words, we define the trial
function as{

linear function, if a triangular element has no hanging node
isoparametric bilinear function, if a triangular element has a hanging node

.

We follow the Zienkiewicz-Zhu [34,35] type gradient recovery operator in the Esti-

mate step, and the marking strategy proposed by Dörfler [10] in the Mark step.
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One may naturally ask a question: how about the actual significance of the novel
AVFM? It is known that to keep the conformity, in the Refine step, one often needs
an additive “completion” procedure [3] to eliminate the hanging nodes. Our nu-
merical experiments show that the novel AFVM decrease the steps of bisection for
the conformity compare to the standard AFVM which needs traditional “comple-
tion” procedure. Moreover, our AFVM possesses the local conservation property.
Furthermore, suppose u is the exact solution of the elliptic equation, our numerical
results show that

|u− uk|1 ≤ C1N
−1/2
k and ‖u− uk‖0 ≤ C2N

−1
k ,

where uk and Nk are the FVM solution and the number of elements of the mesh
to k-th iteration, C1 and C2 are two constants. We note that in our numerical
example, the optimal convergence order of H1 and L2 errors can be obtained even
if u ∈ H1+ 2

3
−ε(Ω) for all ε > 0 and u /∈ H2(Ω), and the domain Ω is not convex.

The main idea of our AFVM can be applied to general elliptic equations. To
illustrate the basic idea, we focus on the model problem

−O · (αOu) = f in Ω,(1)

u = 0 on ∂Ω,(2)

where Ω ⊂ R
2 is a convex polygon domain, α is a piecewise continuous function

that bounded below: There exists a positive constant α0 > 0 such that α(x) ≥ α0

for almost all x ∈ Ω, and f is a real valued function defined on Ω. The stability
analysis of our finite volume scheme is a routine under the framework of linear
on triangular element [29] and isoparametric bilinear on quadrilateral element [25],
and we obtain the optimal convergence rate of H1 and L2 norms.

The rest of this paper is organized as follows. In the next section we introduce
a FVM on hybrid triangular and quadrilateral meshes. The optimal convergence
properties are studied both in H1 and L2 spaces. Our novel AFVM is presented in
Section 3. Numerical examples are provided in Section 4 to validate that our novel
AFVM has optimal computational cost and the theoretical results of our FVM.

We end this section with some notations. For an integer m ≥ 0 and 1 ≤ p ≤ ∞,
Wm,p(Ω) denote the standard Sobolev spaces of functions that have generalized
derivatives up to order m in Lp(Ω). The norm (or semi-norm) is defined by

‖u‖m,p,Ω =
(∑

|α|≤m ‖Dαu‖pp
)1/p

(or |u|m,p,Ω =
(∑

|α|=m ‖Dαu‖pp
)1/p

) for 1 ≤
p < ∞, and with the standard modification for p = ∞. Hm(Ω) := Wm,2(Ω) and
H1

0 (Ω) denote the subspace of H1(Ω) of functions vanishing on the boundary ∂Ω.
For simplicity, in the rest of the paper we will omit the subscript index when p = 2
and the domain index Ω if needed. Furthermore, (·, ·) denotes the standard L2(Ω)-
inner product. To avoid writing constants repeatedly, “A . B” means that A can
be bounded by B multiplied by a constant which is independent of the parameters
which A and B may depend on, “A & B” means that B can be bounded by A.
“A ∼ B” means “A . B” and “B . A”.

2. A finite volume method on hybrid meshes

2.1. A hybrid triangular and quadrilateral mesh. We partition Ω into a
mesh Th consisting of a finite number of triangles and convex quadrilaterals, where
h is the largest diameter of all triangles and quadrilaterals, and we call Th the
primal mesh of Ω, see Fig.1. We denote by Nh the set of all vertices of Th, and let
N ◦

h = Nh\∂Ω be the set of all interior vertices.


