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VARIABLE TIME-STEP θ-SCHEME FOR NONLINEAR SECOND

ORDER EVOLUTION INCLUSION

KRZYSZTOF BARTOSZ

Abstract. We deal with a multivalued second order dynamical system involving a Clarke subd-
ifferential of a locally Lipschitz functional. We apply a time discretization procedure to construct
a sequence of solutions to a family of the approximate problems and show its convergence to
a solution of the exact problem as the time step size vanishes. We consider a nonautonomous
problem in which both the viscosity and the multivalued operators depend on time explicitly.
The time discretization method we use, is the θ-scheme with θ ∈ [ 1

2
, 1], thus, in particular, the

Crank-Nicolson scheme and the implicit Euler scheme are included. We apply our result to a class
of dynamic hemivariational inequalities.
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1. Introduction

In this paper we deal with a time discretization method for a second order,
dynamic subdifferential inclusion, involving nonlinear, time dependent viscosity
operator and a multivalued term that is a Clarke subdifferential of a locally Lipschitz
continuous function that is possibly nonmonotone and nonsmooth.

Various types of Clarke subdifferential inclusions, formulated often in an al-
ternative way, by means of hemivariational inequalities (HVIs), are motivated by
numerous physical phenomena, in which contact problems in mechanics play a lead-
ing role. Indeed, the number of applications became a main impulse for research in
this field. After first results of Clarke and Panagiotopoulos (see [10, 29]), the theory
of HVIs has been developed by Miettinen, Migórski, Motreanu, Naniewicz, Pana-
giotopulos and Ochal (see [21, 22, 23, 24, 25, 27, 28, 30]). Currently many authors
devote their attention either to the theory of HVIs (see for instance [8, 9, 14, 19])
or to its applications in modelling of contact problems in mechanics (see [4, 5]). For
the present state of the art we refer to [6, 26]. In spite of an impressive progress of
the theory, there are still relatively few results concerning numerical methods for
HVIs and many problems still remain open in this field. In particular, the dynamic
development of computational devices, allows to implement increasingly complex
mathematical models. Due to this fact, the numerical results become more and
more needed in case of HVIs as well. Haslinger and Miettinen were the first to ap-
ply the Finite Element Methods for problems modelled by HVIs (see [15, 20]). As
for the time discretization methods in HVIs, the strong results concerning parabolic
problems, were obtained by Kalita et al. in [7, 16, 17, 18]. Similar methods have
been used by Liu, Peng and Xiao in [31, 32, 33] in the case of evolution HVIs with
doubly nonlinear operators. In particular the second order HVIs has been studied
in [33] in the framework of the Gelfand triple V ⊂ H ⊂ V ∗, where the multivalued
term is defined on the space H . In this paper, the multivalued term is defined on
another Banach space U such that there exists a linear, continuous and compact
operator ι : V → U . In applications U = Lp(Γ;Rd), where Γ is contained in the
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boundary of the set Ω ⊂ Rd. It allows to apply our result to HVIs arising from non-
monotone and nonsmooth contact problems in mechanics. For other recent results
concerning numerical methods for static or dynamic HVIs, we refer for instance to
[2, 3, 11, 12, 13, 35].

In this work, we deal with a numerical analysis of dynamic, second order in-
clusion, which is based on time semidiscrete θ-scheme. To this end, we apply a
technique, that was used in [18] in a study of parabolic problems. We apply our
result to a class of dynamic boundary HVIs. In several ways, our paper improves
known existence results in this area. One of basic applications of HVI’s is mathe-
matical modelling of a behaviour of physical body which occupies a region Ω ∈ Rd

and stays in a contact with a foundation. It is usually assumed, that the body is
clamped on a part of boundary ΓD ⊂ ∂Ω. Our result allows to skip this restric-
tion (see Section 7). It generalizes also [22] by removing a smallness assumption
for p = 2 (see Remark 32 for details). Moreover, not only we provide the exis-
tence result, but we also construct a sequence of functions, which approximate the
solution of the exact problem. From this point of view, our method is not only
constructive but can be used in computer implementation. Finally, the present pa-
per generalizes also the result obtained by the author in [6] for the autonomous case.

The rest of the paper is organized as follows. In Section 2, we introduce the
notations and definitions used in the paper and present several auxiliary proposi-
tions. In Section 3, we formulate an abstract second order subdifferential inclusion
and describe assumptions on the data of the problem. We also provide two cru-
cial lemmas concerning properties of the Nemytskii operator corresponding to the
viscosity operator A. In Section 4, we formulate an auxiliary discrete problem and
provide its solvability. Based on this, we construct a sequence of piecewise constant
and piecewise linear functions, for which we derive a-priori estimates and, using the
reflexivity of the spaces, we obtain a weak convergence result. Finally, we provide
the main existence result, namely, we show, that the limit function is a solution of
the exact problem. In particular, this provides a constructive proof of the existence
for the problem. In Section 5, we use the (S+) property of the viscosity operator
in order to obtain a strong convergence result. In Section 6, we apply the abstract
result to a class of boundary HVIs arising from contact problems in mechanics. In
Section 7, we deal with the non-clamped dynamic contact problem modelled by
HVI’s.

2. Preliminaries

In this section we recall some definitions and propositions which we will refer
to in the sequel. We start with the definitions of Clarke directional derivative and
Clarke subdifferential. Let X be a real Banach space, X∗ its dual and let J : X → R

be a locally Lipschitz functional.

Definition 1. Generalized directional derivative in the sense of Clarke at the point
x ∈ X in the direction v ∈ X, is defined by

(1) J0(x, v) = lim sup
y→x,λց0

J(y + λv) − J(y)

λ
.

Definition 2. Clarke subdifferential of J at the point x ∈ X is defined by

∂J(x) = {ξ ∈ X∗ | J0(x, v) ≥ 〈ξ, v〉X∗×X for all v ∈ X}.


