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A SIMPLE FAST ALGORITHM FOR MINIMIZATION OF THE

ELASTICA ENERGY COMBINING BINARY AND LEVEL SET

REPRESENTATIONS

XUE-CHENG TAI AND JINMING DUAN

Abstract. For curves or general interfaces, Euler’s elastica energy has a wide range of applications
in computer vision and image processing. It is however difficult to minimize the functionals related

to the elastica energy due to its non-convexity, nonlinearity and higher order with derivatives. In

this paper, we propose a very simple way to combine level set and binary representations for
interfaces and then use a fast algorithm to minimize the functionals involving the elastica energy.

The proposed algorithm essentially just needs to solve a total variation type minimization problem

and a re-distance problem. Nowadays, there are many fast algorithms to solve these two problems
and thus the overall efficiency of the proposed algorithm is very high. We then apply the new

Euler’s elastica minimization algorithm to image segmentation, image inpainting and illusory

shape reconstruction problems. Extensive experimental results are finally conducted to validate
the effectiveness of the proposed algorithm.
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1. Introduction

For a two-dimensional curve γ, its elastica energy is defined as

(1) E (γ) =

∫
γ

(
a+ bκ2

)
ds.

Here κ is the curvature of the curve γ, ds is arc length and a and b are two
positive parameters. If we set b = 0, E (γ) measures the total length of the curve.
If a = 0, then E (γ) measures the twisting energy of the curve which is related
to the curvature. The elastica energy has no difficulty to be extended for higher
dimensional interface problems. For a function u defined on the domain Ω, the
Euler’s elastica energy of all level curves of u over Ω can be expressed as a functional
of u by

(2) E (u) =

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣2
)
|∇u| dx.

In the field of image processing, Euler’s elastica energy was first introduced by
Nitzberg, Mumford, and Shiota for segmenting an image into objects with different
depths in the scene [1]. Since then, it has been adapted to many fundamental
problems in mathematical imaging. This includes image inpainting [2, 3, 4], image
restoration [5, 6, 4, 7], image zooming [4] and image segmentation [8, 9, 10].

It is however nontrivial to minimize the functional (2) directly, because it involves
non-differentiable, nonlinear and higher order terms. Recently, a lot of research have
focused on the developments of fast and reliable numerical methods for minimizing
curvature based functionals, including the multigrid algorithm [11], the homotopy
method [12], augmented Lagrangian method (ALM) based algorithms [13, 14, 4],
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graph cut based algorithms [7, 15] and convex relaxation approaches [16, 17, 18, 19].
Among them the ALM based algorithms are particularly of interest, because the
resulting minimization problems by the ALM can be implemented very easily and
efficiently. ALM thus has become a powerful tool for developing efficient numerical
schemes to deal with many nonlinear image processing models, such as the non-
differentiable Rudin-Osher-Fatemi (ROF) model [20], the Euler’s elastica and mean
curvature models [4, 9, 14, 21]. The main idea of the ALM is to convert the original
problem into a few subproblems, each of which is a very simple problem and can
thus be solved efficiently. The minimizer of the original problem is obtained when
the overall algorithm has converged. To minimize the Euler’s elastica energy (2)
with a data fidelity term D(u) using the ALM, (2) is first transformed into the
following equivalent constrained minimization problem

(3) min
u,p,m,n

∫
Ω

(
a+ b(∇ · n)

2
)
|p| dx+D(u) s.t. p = ∇u, n = p

|p| .

The constraint n = p
|p| in (3) can be converted to

|m| ≤ 1, |p| = m · p, m = n.

With these new constraints, the augmented Lagrangian functional for (3) is:

E (u,p,m,n;λ1,λ2,λ3) =

∫
Ω

(
a+ b(∇ · n)

2
)
|p| dx+D(u)

+ µ1

∫
Ω

(|p| − p ·m)dx+

∫
Ω

λ1 (|p| − p ·m)dx

+
µ2

2

∫
Ω

|p−∇u|2dx+

∫
Ω

λ2 · (p−∇u)dx

+
µ3

2

∫
Ω

|n−m|2dx+

∫
Ω

λ3 · (n−m)dx+ δR(m),

(4)

where R =
{
m ∈ L2 (Ω) : |m| ≤ 1 a.e. in Ω

}
and δR(m) is the characteristic func-

tion on the convex set R, which is given by

δR(m) =

{
0 if m ∈ R
+∞ otherwise

.

Moreover, µ1, µ2 and µ3 are positive penalty parameters while λ1, λ2 and λ3 are
Lagrange multipliers. Since m is forced to be inside R, |m| ≤ 1, |p| −m · p ≥ 0
for any p, and |p| −m · p = 0 if and only if m = p

|p| . This simplifies p’s subprob-

lem because quadratic term is avoided. The unknown m is introduced to decouple
p and n such that p’s subproblem can be solved by the shrinkage and m’s sub-
problem by the fast Fourier transform. Notice that the fidelity term D(u) should
be addressed properly according to different applications. For example, for noise
removal with Gaussian noise, it is common to choose D(u) =

∫
Ω

(u− f)
2
dx. In

such a case, the algorithm can be used directly and give fast numerical implemen-
tations. However, an additional variable should be introduced for the algorithm
when D(u) =

∫
Ω
|u− f |dx, which is common for impulsive noise removal. We refer

the reader to [4] for more details on the application of the ALM to different D(u).
One now needs to minimize the augmented Lagrangian functional for each of the
variables u,p,m,n by fixing the others. After all the variables are solved, the La-
grange multipliers λ1,λ2,λ3 should be updated. The procedure is repeated until
all the variables have converged.

By considering the underlying relation between the length term and the curvature
term in the Euler’s elastica energy, in this paper we propose a novel algorithm for


