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A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE

ELEMENT GALERKIN APPROXIMATIONS TO SECOND

ORDER LINEAR HYPERBOLIC EQUATIONS
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Abstract. In this article, a posteriori error analysis for mixed finite element Galerkin approxi-
mations of second order linear hyperbolic equations is discussed. Based on mixed elliptic recon-
structions and an integration tool, which is a variation of Baker’s technique introduced earlier by
G. Baker (SIAM J. Numer. Anal., 13 (1976), 564-576) in the context of a priori estimates for
a second order wave equation, a posteriori error estimates of the displacement in L∞(L2)-norm
for the semidiscrete scheme are derived. Finally, a first order implicit-in-time discrete scheme is
analyzed and a posteriori error estimators are established.
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1. Introduction

In this paper, we discuss a posteriori error estimates for mixed finite element
Galerkin approximations to the following class of second order linear hyperbolic
problems:

utt −∇ · (A∇u) = f in Ω× (0, T ],(1)

u|∂Ω = 0 u|t=0 = u0 and ut|t=0 = u1.(2)

Here, Ω ⊂ IR2 is a bounded polygonal domain with boundary ∂Ω, 0 < T < ∞,
ut =

∂u
∂t and A(x) = (aij(x))1≤i,j≤2 is a symmetric and uniformly positive definite

matrix. All the coefficients aij ’s are smooth functions of x with uniformly bounded
derivatives in Ω̄. Moreover, the initial functions u0 = u0(x), u1 = u1(x) and the
forcing function f = f(x, t) are assumed to be smooth functions in their respective
domains.

In recent years, there has been a growing demand for designing reliable and
efficient space-time algorithms for the numerical computation of time dependent
partial differential equations. Most of these algorithms are based on a posteriori
error estimators, which provide appropriate tools for adaptive mesh refinements.
For elliptic boundary value problems, a posteriori error estimates are well developed
(see, [3, 32]). Adaptivity with a posteriori error control for parabolic problems has
also been an active research area for the last two decades (cf. [18, 33, 25, 30, 8, 9, 5]
and references, therein). For the time discretization, some results on a posteriori
error estimations for abstract first order evolution problems are available in the
literature (cf. [4, 21, 26, 28, 30]).

In the context of second order wave equations, only few results are available on
a posteriori error analysis, see, [24, 1, 14, 13, 7, 31]. Further, it is observed that
the design and implementation of adaptive algorithms for these equations based
on rigorous a posteriori error estimators are less complete compared to elliptic
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and parabolic equations. Based on a space-time finite element discretization with
basis functions being continuous in space and discontinuous in time, a priori and a
posteriori error estimates for second order linear wave equations are proved in [24].
Asymptotically exact a posteriori estimates for the standard finite element method
are proposed and analyzed in [1, 2] by solving a set of local elliptic problems. The
recent results in [7, 20] cover only first order time discrete schemes. In [7], the
second order wave equation is written as a first order system and a first order
implicit backward Euler scheme in time is used with continuous piecewise affine
finite elements in space. Further, rigorous a posteriori bounds have been established
using energy arguments and adaptive algorithms based on the a posteriori bounds
are discussed. In [20], based on Baker’s technique a posteriori bounds are derived
for the semidiscrete scheme in L∞(L2)-norm and for first order implicit-in-time
fully discrete schemes in ℓ∞(L2)-norm. The fully discrete analysis relies crucially
on a novel time reconstruction satisfying a local vanishing-moment property, and
on a space reconstruction technique used earlier in [28] for parabolic problems. In
[14], an adaptive algorithm in space and time which is based on Galerkin space-time
discretizations leading to Newmark scheme is analyzed. Further, goal oriented a
posteriori error estimates are derived and some numerical results are provided to
demonstrate the efficiency of error estimators. In [31], the author has studied an
anisotropic a posteriori error estimate for a finite element discretization of a two
dimensional wave equation. The estimate is derived in the L2(0, T,H1(Ω))-norm
and it turns out to be sharp on anisotropic meshes.

For higher order time reconstruction for abstract second order evolution equa-
tions, one may refer to the recent papers [23, 22]. In [23], an adaptive time stepping
Galerkin method is analyzed for second order evolution problems. Based on the en-
ergy approach and the duality argument, optimal order a posteriori error estimates
and a posteriori nodal superconvergence results have been derived. An adaptive
time stepping strategy is discussed and some numerical experiments are conducted
to assess the effectiveness of the proposed scheme. In a recent work [22], second
order explicit and implicit two-step time discretization schemes such as leap-frog
and cosine methods are discussed and a posteriori estimates using a novel time
reconstruction are derived. Further, some numerical experiments are conducted to
confirm their theoretical findings.

For space-time adaptivity, the finite element discretization depends on the space-
time variational formulation and its error indicators include both space and time
errors. Recently, attempts have been made to exploit elliptic reconstruction to
prove optimal a posteriori error estimates in finite element methods for parabolic
problems [28]. In fact, the role of the elliptic reconstruction operator in a posteriori
estimates is quite similar to the role played by elliptic projection introduced earlier
by Wheeler [34] for recovering optimal a priori error estimates of finite element
Galerkin approximations to parabolic problems. This analysis is, further, developed
for completely discrete scheme based on backward Euler method [26], for maximum
norm estimates [17] and for discontinuous Galerkin methods for parabolic problems
[21]. In recent works [29] and [27], the analysis is further extended to mixed FE
Galerkin methods applied to parabolic problems.

In this article, an a posteriori analysis is discussed for mixed finite element
Galerkin approximations of a class of second order linear hyperbolic problems.
One notable advantage of mixed finite element scheme is that it offers a simultane-
ous approximations of displacements and stresses, resulting in better convergences
rates for the stress variable. This property is important in applications such as


