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A THIRD ORDER LINEARIZED BDF SCHEME FOR

MAXWELL’S EQUATIONS WITH NONLINEAR CONDUCTIVITY

USING FINITE ELEMENT METHOD

CHANGHUI YAO, YANPING LIN, CHENG WANG, AND YANLI KOU

Abstract. In this paper, we study a third order accurate linearized backward differential for-
mula (BDF) type scheme for the nonlinear Maxwell’s equations, using the Nédelec finite element
approximation in space. A purely explicit treatment of the nonlinear term greatly simplifies the
computational effort, since we only need to solve a constant-coefficient linear system at each time
step. An optimal L2 error estimate is presented, via a linearized stability analysis for the nu-
merical error function, under a condition for the time step, τ ≤ C∗

0h
2 for a fixed constant C∗

0 .
Numerical results are provided to confirm our theoretical analysis and demonstrate the high order
accuracy and stability (convergence) of the linearized BDF finite element method.
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1. Introduction

This paper is concerned with the nonlinear Maxwell’s equations

ǫEt + σ(x, |E|)E −∇×H = 0, in Ω× (0,+∞),(1)

µHt +∇×E = 0, in Ω× (0,+∞),(2)

with initial and boundary conditions

E(x, 0) = E0(x), H(x, 0) = H0(x), in Ω,(3)

n×E = 0 and n ·H = 0, on Γ× (0,+∞),(4)

where Ω is a bounded, convex, simply-connected domain in R3 with a regular
boundary Γ = ∂Ω, E(x, t), H(x, t) represent the electric and magnetic fields, n is
the outward normal vector on Γ, and the positive constants ǫ and µ stand for the
permittivity and the magnetic permeability, respectively. In addition, σ = σ(x, s)
is a real valued function representing the electric conductivity.

The system (1)−(4) have been investigated in [6, 31, 32]. The authors proved the
existence of the weak solution for a nonlinear function J(E) = σ(|E|)E, with σ(s)
monotonically increasing. In [4], the authors presented the existence and uniqueness
of the scheme by discretizing the time domain and taking the limit for infinitely
small time-step. In section 5 of [4], the authors also proved that the solutions
converges to the quasi-state state (no time derivative for equation involving E)
when the permittivity ǫ → 0. Also when ǫ goes zero, numerical example indicated
that numerical scheme converges to the quasi static state as part of verification.
In [5], the authors proved existence and uniqueness of the discrete fields using the
monotone operator theory (see [27]). In [26], the authors studied a time dependent
eddy current equation, established the existence and uniqueness of a weak solution
in suitable function space, designed a nonlinear time discrete approximation scheme
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based on the Rothe’s method and proved the convergence of approximation to a
weak solution.

Numerical analysis for the nonlinear system have also been extensively carried
out, see [2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 18, 22, 23, 25, 26]. In addition, nonlinear
schemes have been proposed and analyzed in many literatures. In [4], the authors
presented a numerical scheme to solve coupled Maxwell’s equations with a nonlinear
conductivity, with the backward Euler discretization in time and mixed conforming
finite elements in space. And also, a mixed finite element method for the Maxwell’s
equations with a nonlinear boundary condition was studied in [25]. In [10], the
authors proposed a fully-discrete finite element method to solve the time-domain
metamaterial Maxwell’s equations, which can be reduced to a vector wave integro-
differential equation involving just one unknown. Some related works can also be
found in [9, 11, 12, 18]. In [5], the authors proposed a numerical scheme based on
backward Euler discretization in time and curl-conforming finite element in space
to solve Maxwell’s equations with nonlinear conductivity in the form of a power
law. As a result, its convergence was proved, based on the boundedness of the
second derivative in the dual space by the Minty-Browder technique. In [3], the
authors developed a fully-discrete (T, ψ) − ψe finite element decoupled scheme to
solve time-dependent eddy current problem with multiple-connected conductors.
Subsequently, an improved convergence rate analysis was provided in [14]. A few
more earlier works are also available in [23, 26].

Clearly, linearized schemes are much more efficient than nonlinear schemes for
solving nonlinear equations, since only one linear system solver is needed in the
former one, while the latter one always requires a nonlinear iteration solver at
each time step. For example, a new approach was developed in [16], based on
a temporal-spatial error splitting technique by introducing a corresponding time-
discrete system. Similarly, a linearized backward differential formula (BDF) type
scheme was applied to the time-dependent nonlinear thermistor equation in [7].
The linearized backward Euler scheme for the nonlinear Joule heating equation
was studied in [8]. In [29], the authors presented an optimal L2 error estimate of
a linearized Crank-Nicolson Galerkin FEM for a generalized nonlinear Schrödinger
equation, without any time step size restriction.

In turn, an important question arises: Is it possible to design higher order (≥ 3)
linearized temporal discretization for the nonlinear Maxwell’s equations, with a
convergence analysis available? In this paper, we give an affirmative answer to this
question. We propose a third order accurate, linearized BDF type FEM method for
the Maxwell’s equations and provide a theoretical error analysis for the proposed
scheme. It is well-known that the 3rd order BDF temporal scheme is not A-stable;
in fact, its stability domain does not contain any part on the purely imaginary
axis, where all the eigenvalues of the linear Maxwell operator are located. This fact
makes a theoretical analysis for the 3rd order BDF method applied to the Maxwell
equation highly challenging. To overcome this subtle difficulty, we take an inner
product with the numerical error equation by en+1 + (λ0 + 1)(en+1 − en) (with
λ0 > 0 and ek denoted as the numerical error function at time step tk), and employ
a telescope formula established in [20]. Moreover, due to the hyperbolic nature of
the Maxwell’s equation, a requirement for the time step size, τ ≤ C∗

0h
2 (with C∗

0

a fixed constant), has to be imposed to pass through the numerical error estimate.
Another key technical contribution in the convergence analysis is to obtain an L∞

bound of the numerical solution, via a linearized stability analysis for the numerical
error function; by contrast, such an L∞ bound was not needed in the previous


