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ANALYSIS OF AN EMBEDDED DISCONTINUOUS GALERKIN

METHOD WITH IMPLICIT-EXPLICIT TIME-MARCHING FOR

CONVECTION-DIFFUSION PROBLEMS

GUOSHENG FU AND CHI-WANG SHU

Abstract. In this paper, we analyze implicit-explicit (IMEX) Runge-Kutta (RK) time discretiza-
tion methods for solving linear convection-diffusion equations. The diffusion operator is treated
implicitly via the embedded discontinuous Galerkin (EDG) method and the convection operator
explicitly via the upwinding discontinuous Galerkin method.
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1. Introduction

In this paper, we propose and analyze an implicit-explicit embedded discon-
tinuous Galerkin (IMEX-EDG) method for solving the linear convection diffusion
equation. We use the IMEX Runge-Kutta time discretization [1] that treats the
diffusion term implicitly via the embedded discontinuous Galerkin (EDG) method
[7, 6] and the convection term explicitly via the upwinding discontinuous Galerkin
method [9]. For a detailed discussion on IMEX RK schemes, see [1, 3, 8] and
references therein.

The EDG methods, originally introduced for linear shells in [7], is obtained
from hybridizable discontinuous Galerkin (HDG) methods [5] by simply reducing
the space of the hybrid (interface) unknowns by requiring them to be continuous
across the mesh skeleton. It reduces the globally coupled degrees of freedom (after
hybridization) to exactly those for a continuous Galerkin formulation (after static
condensation).

Here we consider three specific Runge-Kutta type IMEX schemes given in [1]
from first to third order accuracy. Coupling with the EDG (diffusion) and up-
winding DG (convection) spatial discretization, we give the stability analysis and
error estimates by the energy method. Our work is inspired from [10, 11, 12],
where the authors analyzed IMEX time stepping coupled with local discontinu-
ous Galerkin (LDG) methods for linear and nonlinear convection diffusion equa-
tions. The only difference of the IMEX-LDG and IMEX-EDG methods is on the
discretization of the diffusion operator. While the theoretical results are similar
for both spatial approaches, the IMEX-EDG methods is more computationally
efficient due to a smaller number of globally coupled degrees of freedom. On
a fixed triangular mesh in two dimensions, using polynomials of degree k ap-
proximations, the LDG method results a globally coupled linear system of size
Nt(k + 1)(k + 2)/2 ≈ Nv(k + 1)(k + 2), while the EDG method results a globally
coupled linear system of size Nv +Ne(k − 1) ≈ Nv(3k − 2). Here Nv, Ne, and Nt
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are the numbers of vertices, edges, and triangles. We remark that while we can
equally use the HDG methods [5] (with a discontinuous hybrid space) to discretize
the diffusion operator, the EDG methods is more efficient in terms of the number
of globally coupled degrees of freedom.

The paper is organized as follows. In Section 2 we present the spatial discretiza-
tion for the model convection diffusion problem and give some preliminary results.
Then, in Section 3, we present and analyze the fully discrete schemes with IMEX
RK time discretization. Several numerical tests are presented in Section 4 to verify
the main results in Section 3. Finally, we conclude in Section 5.

2. Semi-discretization with EDG for diffusion and upwinding DG for
convection

In this section, we present the spatial discretization for the following linear
convection-diffusion problem:

ut +∇ · (βu)−∇ · (ǫ∇u) = 0, (x, t) ∈ ΩT = Ω× (0, T ],(1a)

u(x, 0) = u0(x), x ∈ Ω,(1b)

with a periodic boundary condition. Here Ω ∈ R
d (d = 1, 2, 3) is a bounded

rectangular domain, β = (β1, · · · , βd) ∈ R
d is a constant velocity field, ǫ is the

diffusion coefficient, and u0(x) is the initial solution.
We use the EDG scheme [7, 6] to discretize the diffusion operator and the up-

winding DG scheme [9] to discretize the convection operator. We present properties
of these schemes that will be used for the analysis of the fully discrete schemes in
Section 3.

We first collect some notation that will be used throughout the paper.

2.1. Notation and preliminaries. We denote by ‖ · ‖Hm(D) the standard Hm-

Sobolev norm on the domain D ⊂ R
d. When m = 0, we simplify the notation and

denote by ‖ · ‖D the L2-norm on D.
We denote by Th := {K} a quasi-uniform, shape-regular conforming simplicial

triangulation of Ω, and by Eh the mesh skeleton consists the set of facets F (element
nodes in 1d, edges in 2d, and faces in 3d) of the simplicial elements K ∈ Th. We
denote by ∂K the element boundary of an element K.

We denote by Volume(K) and Volume(∂K) the volume and surface area of K
in 3d. In 2d, Volume(K) is the area of the triangle K, and Volume(∂K) is the
perimeter length. And in 1d, Volume(K) is the length of the interval K, and
Volume(∂K) is set to be 2. We set hK := diam(K) and h := maxK∈Th

hK .
Associated with the triangulation and mesh skeleton, we define the discontinuous

(cell-wise) finite element spaces (on Th) and continuous (facet-wise) finite element
space (on Eh):

Rh := {r ∈ L2(Th)d : r|K ∈ Pd
k−1(K), K ∈ Th},(2a)

Vh := {v ∈ L2(Th) : v|K ∈ Pk(K), K ∈ Th},(2b)

Mh := {v̂h ∈ C0(Eh) : v̂h|F ∈ Pk(F ), F ∈ Eh},(2c)

for k ≥ 1. Here Pm(K) (Pd
m(K)) stands for the space of scalar (vector) polynomials

of degree at most m. We use the convention that Pm(F ) is the space of constants


