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MODELING THE LID DRIVEN FLOW: THEORY AND

COMPUTATION

MAKRAM HAMOUDA1,2, ROGER TEMAM2 AND LE ZHANG2

Abstract. Motivated by the study of the corner singularities in the so-called cavity flow, we
establish in the first part of this article, the existence and uniqueness of solutions in L2(Ω)2 for
the Stokes problem in a domain Ω, when Ω is a smooth domain or a convex polygon. This result
is based on a new trace theorem and we show that the trace of u can be arbitrary in L2(∂Ω)2

except for a standard compatibility condition recalled below. The results are also extended to the
linear evolution Stokes problem. Then in the second part, using a finite element discretization,
we present some numerical simulations of the Stokes equations in a square modeling thus the
well known lid-driven flow. The numerical solution of the lid driven cavity flow is facilitated
by a regularization of the boundary data, as in other related equations with corner singularities
( [9], [10], [45], [24]). The regularization of the boundary data is justified by the trace theorem in
the first part.

Key words. Stokes and related (Oseen, etc.) flows, weak solutions, existence, uniqueness,
regularity theory, lid driven cavity.

Introduction

We are interested in the first part of this article in the existence of L2−solutions
for the (linear stationary) Stokes problem in a domain Ω of R2. The set Ω is assumed
to be bounded, regular of class C2, or it could be a convex polygonal domain. More
generally Ω can be what we will call a (convex) domain of polygonal type that is Ω
a piecewise C2 domain for which the tangent to the boundary Γ has a finite number
of discontinuity points S1, . . . , SN , with a well defined left and right tangent at
these points, the angle between the tangents being 0 < αj < π; hence the domain
Ω needs not be convex in this case, we only require the angles to be convex.

Motivated by the study of a flow in such a domain Ω (see Part 2) we start with
the stationary linear Stokes problem, which, in its most general form reads:

(1)











−∆ũ+∇p̃ = f in Ω,

div ũ = h in Ω,

ũ = g on Γ = ∂Ω.

The emphasis in the second part of this article is on the so-called lid-driven cavity
problem. In this case Ω is the square (0, 1)× (0, 1), f = h = 0 and g = (0, 0) at x =
0, 1, and y = 0, and g = (1, 0), at y = 1; the discontinuities of g produce singularities
and vortices at the corners (0, 1) and (1, 1). We describe this example in more detail
in Section 3 and in Part 2 where we exhibit some numerical simulations related to
the lid-driven cavity problem using the classical finite element discretization method
together with a regularization of the boundary values of the velocity justified by
the results in Part 1.

We know that if f ∈ L2(Ω)2, h = g = 0, then the existence and uniqueness of a
solution ũ ∈ H1

0 (Ω)
2 of (1) is derived from the projection theorem, and p̃ ∈ L2(Ω)
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follows from the result of Deny-Lions [13]; see also [59], [60]. If f ∈ L2(Ω)2 and h ∈
L2(Ω), with

∫

Ω
hdxdy = 0, we have existence and uniqueness of U ∈ H2(Ω)2, P ∈

H1(Ω) satisfying

(2)











−∆U +∇P = f in Ω,

div U = h in Ω,

U = 0 on Γ.

In the case where Ω is smooth, this result is proved in [8]; see also [31]. When
Ω is of polygonal type, this result is proven in [32]; see also [33]. The difference
u = ũ − U, p = p̃ − P is solution of the following problem which concentrates the
lack of regularity on the boundary value, like for the lid driven cavity problem:

(3)











−∆u+∇p = 0 in Ω,

div u = 0 in Ω,

u = g on Γ.

In Section 1 we derive a trace theorem for functions u in L2(Ω)2 satisfying (3)1,
(3)2, thus giving a meaning to (3)3. Then in Section 2 we establish the existence
and uniqueness of a solution u ∈ L2(Ω)2 of (3) provided

∫

Γ g · n dΓ = 0, see
Theorem 3; here n is the unit outward normal vector on Γ and below τ is the unit
tangent vector, such that n is directly orthogonal to τ . We discuss in more details
an example of lid driven cavity flow in Section 3. Finally in Section 4 we extend
the results to the linear evolution Stokes problem. Namely, we prove the necessary
trace theorems, then, in Theorem 5, we show that if g is given in L2(0, T ;L2(Γ)2)
satisfying

∫

Γ
g · n dΓ = 0 for a.e. t ∈ (0, T ), then there exists a unique solution

u ∈ L2(0, T ;L2(Ω)2) of

(4)























∂u

∂t
−∆u+∇p = 0 in (0, T )× Ω,

div u = 0 in Ω,

u = g on (0, T )× Γ,

u(0) = 0,

with p ∈ D′((0, T )× Ω).
There is a large literature on weak solutions of the Navier-Stokes equations start-

ing with the now classical results of J. Serrin [53] of solutions of the Navier-Stokes
equations in Lr(0, T ;Ls) up to the recent result [27] of uniqueness of solutions in
L3(0, T ;L3(R3)3), itself followed by a series of articles improving and simplifying
its proof.

In another direction Fabes, Kenig and Verchota study in [18] the stationary
Stokes problem on Lipschitz domains of R

n, n ≥ 3, using methods of harmonic
analysis. This work is extended to the time-dependent case in the articles [52], [51]
which study the evolution Stokes equation in a Lipschitz domain of Rn, n ≥ 3, in
L2 space in [52] and in some Lp spaces in [51].

In yet another direction, H. Amann introduced in [2] and [1] a concept of weak
solutions for the Navier-Stokes equations using the concept of duality or adjoint
equations. The idea is to integrate by parts all or most of the derivatives against
a smooth test function. The whole book [41] is devoted to constructing such weak
solutions of linear elliptic and parabolic equations, but they do not address the
case of the Stokes equations. The work of [1,2] has been subsequently extended in
different directions (Stokes vs Navier-Stokes, stationary vs time dependent, space
L2 vs spaces Lp) in a series of articles [22], [21], [23], [20] ; see also [46], [43]. These


