
INTERNATIONAL JOURNAL OF c© 2017 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 14, Number 2, Pages 153–174

NUMERICAL ANALYSIS OF A THERMOELASTIC DIFFUSION

PROBLEM WITH VOIDS

JOSÉ R. FERNÁNDEZ AND MARIA MASID

Abstract. In this paper we consider, from the numerical point of view, a thermoelastic diffusion porous
problem. This is written as a coupled system of two hyperbolic equations, for the displacement and porosity
fields, and two parabolic equations, for the temperature and chemical potential fields. Its variational for-
mulation leads to a coupled system of four parabolic variational equations in terms of the velocity, porosity
speed, temperature and chemical potential. The existence and uniqueness of weak solutions, as well as an
energy decay property, are recalled. Then, the numerical approximation is introduced by using the finite ele-
ment method for the spatial approximation and the implicit Euler scheme to discretize the time derivatives.
A stability property is proved and some a priori error estimates are obtained, from which the convergence
of the algorithm is derived and, under suitable additional regularity conditions, its linear convergence is de-
duced. Finally, some numerical approximations are presented to demonstrate the accuracy of the algorithm
and to show the behaviour of the solution.
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1. Introduction

The field of diffusion in solids has been a topic with an increasing interest, after the second
world war, in the development of high technologies. In this way, the problems dealing with
the diffusion of matter in thermoelastic bodies, and the interaction of mechano-diffusion
processes, have become the subject of research of many authors since the first thermoelastic
diffusion theory introduced by Nowacki ( [19]). Nowadays, thermodiffusion problems are
very interesting to oil companies for more efficient extraction of oil from oil deposits. In
such problems, diffusion can be defined as the random walk, of an ensemble of particles,
from regions of high concentrations to regions of lower concentrations ( [1]).

There is a number of theories about mechanical properties of granular materials. Here,
we follow the theory developed by Goodman and Cowin (see [14]), who established that
the mass material admits a decomposition into the density of the matrix material and
the volume fraction field (the porosity), introducing a new kinematic variable. Then, few
years later Nunziato and Cowin proposed in [20] a new theory to describe the properties of
homogeneous elastic materials with voids free of fluid. This has been shown to be useful
for the study of rocks, soils and manufactured porous materials as ceramics and pressed
powders. Moreover, Ieşan developed a linear theory of thermoelastic materials with voids
generalizing some ideas of [13] (see, e.g., [15] or the recent monograph [16]).

In this paper, we consider, from the numerical point of view, a thermoelastic diffusion
problem with voids presented in [1, 4]. The linear thermoelasticity theory with voids is
extended to include diffusion effects, leading to a new and interesting problem. In this
case, thermodiffusion is due to the coupling of the fields of temperature, porosity, mass
diffusion and that of strain. Related problems have been considered by other authors in, for
instance, [9, 10, 17, 21] (without the diffusion effect) or [2, 3, 5, 6]. Here, we concentrate on

Received by the editors on July 27, 2016, and accepted on January 18, 2017.
2000 Mathematics Subject Classification. 74F05, 74F10, 65M60, 65M15, 65M12, 74K10.

153
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the numerical approximation of this problem, introducing fully discrete approximations by
using the finite element method and the implicit Euler scheme, proving a stability property
and some a priori error estimates, and providing some numerical simulations.

The outline of this paper is as follows. In Section 2, the mathematical model and its
variational formulation are presented. An existence and uniqueness result and an energy
decay property, proved in [4], are recalled. Then, fully discrete approximations are intro-
duced in Section 3 by using the finite element method for the spatial approximation and
the backward Euler scheme for the discretization of the time derivatives. A priori error es-
timates are obtained, from which the convergence of the algorithm is derived and its linear
convergence is deduced under suitable additional regularity conditions. Finally, in Section 4
some numerical examples are shown to demonstrate the accuracy of the algorithm and the
behaviour of the solution.

2. The model and its variational formulation

Let us denote by [0, ℓ], ℓ > 0, and [0, T ], T > 0, the one-dimensional rod of length ℓ and
the time interval of interest, respectively. Moreover, let x ∈ [0, ℓ] and t ∈ [0, T ] be the spatial
and time variables. In order to simplify the writing, we do not indicate the dependence of
the functions on x and t, and the subscript under a variable represents its derivative with
respect to the prescribed variable.

According to [4], a porous themoelastic rod with diffusion is considered assuming that
the matrix material is elastic and that interstices are void of material, constituting a gen-
eralization of the classical theory of elasticity (see, for instance, [12, 13]). Therefore, let
u, φ, θ, P ∈ R be the displacement field of the solid elastic material, the porosity (or vol-
ume fraction), the difference of the temperature between the actual state and a reference
temperature, and the chemical potential, respectively.

Therefore, following [1, 4] the mechanical problem of a one-dimensional porous thermoe-
lastic rod with diffusion is written as follows.

Problem P. Find the displacement field u : [0, ℓ] × [0, T ] → R, the porosity field φ :
[0, ℓ]× [0, T ]→ R, the temperature field θ : [0, ℓ]× [0, T ]→ R and the chemical potential field
P : [0, ℓ]× [0, T ] → R such that

ρutt = αuxx + bφx − γ1θx − γ2Px in (0, ℓ)× (0, T ),(1)

Jφtt = ηφxx − bux − δφ+m1θ +m2P in (0, ℓ)× (0, T ),(2)

cθt = k∗θxx − γ1utx −m1φt − κPt in (0, ℓ)× (0, T ),(3)

νPt = h∗Pxx − γ2utx −m2φt − κθt in (0, ℓ)× (0, T ),(4)

u(0, t) = u(ℓ, t) = 0, φ(0, t) = φ(ℓ, t) = 0, θ(0, t) = θ(ℓ, t) = 0,

P (0, t) = P (ℓ, t) = 0 for a.e. t ∈ (0, T ),(5)

u(x, 0) = u0(x), φ(x, 0) = φ0(x), θ(x, 0) = θ0(x) for a.e. x ∈ (0, ℓ),(6)

ut(x, 0) = v0(x), φt(x, 0) = e0(x), P (x, 0) = P0(x) for a.e. x ∈ (0, ℓ).(7)

In this system of equations, ρ is the mass density, α is the elastic coefficient, γ1, γ2 represent
thermal expansion coefficients, b is a porosity coefficient, J = ρ k, where k is the equilibrated
inertia, m1, m2 are thermal expansion coefficients, η, δ represent porosity diffusion coeffi-
cients, κ is a thermal expansion coefficient, c is the heat capacity, ν denotes the diffusion
relaxation time, k∗ represents a thermal diffusion coefficient, h∗ is a diffusion coefficient,
and u0, v0, φ0, e0, θ0 and P0 are given initial conditions. Moreover, homogeneous Dirichlet
boundary conditions have been assumed for the sake of simplicity for all the variables, but


