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HIGHER-ORDER LINEARIZED MULTISTEP FINITE

DIFFERENCE METHODS FOR NON-FICKIAN DELAY

REACTION-DIFFUSION EQUATIONS

QIFENG ZHANG, MING MEI∗, AND CHENGJIAN ZHANG

Abstract. In this paper, two types of higher-order linearized multistep finite difference schemes
are proposed to solve non-Fickian delay reaction-diffusion equations. For the first scheme, the
equations are discretized based on the backward differentiation formulas in time and compact finite
difference approximations in space. The global convergence of the scheme is proved rigorously with
convergence order O(τ2 + h4) in the maximum norm. Next, a linearized noncompact multistep
finite difference scheme is presented and the corresponding error estimate is established. Finally,
extensive numerical examples are carried out to demonstrate the accuracy and efficiency of the
schemes, and some comparisons with the implicit Euler scheme in the literature are presented to
show the effectiveness of our schemes.
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1. Introduction

Nonlinear delay partial differential equations (NDPDEs) are widely used in de-
scription of natural phenomena and social behaviors in biology, medicine, control
theory, epidemiology, climate models, and many others [6, 16, 20, 39, 45]. These
equations have been paid a lot of attention because they provide a powerful tool to
reflect the essential characteristics of processes with delayed effects. However, the
analytical solutions of most of the delay partial differential equations (DPDEs) can
not be explicitly expressed and the theoretical analysis of DPDEs is also difficultly
carried out because of the delayed terms. Hence, developing efficient and higher-
order numerical methods for DPDEs especial NDPDEs has become an important
issue and a hot topic [9, 19, 42, 43].

In this paper, we are dedicated to developing the higher-order numerical ap-
proximation to the solution of non-Fickian delay reaction-diffusion equation of the
form

(1)
∂u
∂t = D1

∂2u
∂x2 + D2

δ

∫ t

0
e−

t−w
δ

∂2u
∂x2 (x,w)dw + f(u(x, t), u(x, t− s), x, t),

where (x, t) ∈ [a, b]× [0, T ], D1, D2 and δ are positive constants, and s > 0 is the
delay parameter. The initial condition associated with (1) is given by

(2) u(x, t) = ϕ(x, t), x ∈ [a, b], t ∈ [−s, 0]

and the boundary conditions are specified by

(3) u(a, t) = ua(t), u(b, t) = ub(t), t > 0.

Equation (1) is called non-Fickian delay reaction-diffusion equation due to certain
memory effects taken into account [6, 20]. In the case of D2 = 0, it reduces to a

Received by the editors on March 3, 2016, and accepted on July 25, 2016.
2000 Mathematics Subject Classification. 65M06, 65M12, 65M15.
∗Corresponding author.

1



2 Q. ZHANG, M. MEI, AND C. ZHANG

regular delayed reaction-diffusion equation, which we frequently encounter in a vast
array of fields. For example, if we take

f(u(x, t), u(x, t− s), x, t) = −au(x, t) +
bu(x, t− s)

1 + um(x, t− s)
,

then, we reduce the equation (1) to the diffusive Mackey-Glass equation [19, 20],
and if we take

f(u(x, t), u(x, t− s), x, t) = −au(x, t) + bu(x, t− s)e−um(x,t−s),

then, we obtain the diffusive Nicholson’s blowflies equation [10,21,22,25–29,32,33].
As a typical partial integro-differential equation, the equation (1) has been paid

more attention and extensively studied [1–4,6–8,11–15,18,20,23,24,30,35,38,40,41].
In 1986, Sloan et al [34] numerically studied it by the backward Euler and Crank-
Nicolson methods. In [13], Fedotov presented an asymptotic method for the analysis
of traveling waves in a one-dimensional reaction-diffusion system where the diffu-
sion has a finite velocity with Kolmogorov-Petrovskii-Piskunov kinetics. Araújo [5]
investigated the qualitative properties of numerical traveling wave solutions for
integro-differential equations. Recently, Khuri et al [18] concentrated on the fi-
nite difference method and the spline collocation method for the numerical so-
lution of a generalized Fisher integro-differential equation, and Branco et al [6]
studied the structure of the solution to the non-Fickian delay reaction-diffusion
equations from both the theoretical and numerical points of view. In [44], Zhang
et al constructed a second-order linearized finite difference scheme for the gener-
alized Fisher-Kolmogorov-Petrovskii-Piskunov equation by introducing a new vari-
able which transforms the integro-differential equation into an equivalent coupled
system of first-order differential equations. Late then, Kazem [17] considered a
meshless method on non-Fickian flows with mixing length growth in porous media
based on radial basis functions. Very recently, Li et al [20] discussed the long time
behavior of non-Fickian delay reaction-diffusion equations and Wang [38] analyzed
the finite element method for fully discrete semilinear evolution equations with
positive memory based on two-grid discretizations.

However, most of the numerical methods are no more than second-order accuracy,
while there are a large number of scenarios where higher-order accurate schemes are
a necessity due to the desired accuracy of the simulations. On the other hand, the
higher-order schemes allow one to approximate a solution with fewer grid points,
while maintaining the same accuracy as a low-order scheme. In certain circum-
stances, the desired grid point size is based on the ability to resolve the structure
of the solution, and not on the accuracy of computation. But, the higher-order
finite-difference schemes, typically achieved by computing derivatives with a wider
matrix stencil, cause some difficulties near the boundary, just as one must be able to
calculate the inner point near the boundary with the same accuracy as the internal
scheme, which should be complicated to implement. Based on such a reason, there
is a great interest in the higher-order finite difference schemes. Since the 1950s,
the compact finite difference schemes have been applied to solve partial differential
equations more and more frequently, and more recently, the compact finite differ-
ence schemes have been extended to DPDEs, for instance, see [43] by proposing a
compact multisplitting scheme for the nonlinear delay convection-reaction-diffusion
equations, and [36] by applying the compact difference scheme to delay reaction-
diffusion equations based on Crank-Nicolson scheme in temporal direction, and [42]
by employing the compact difference scheme combined with extrapolation tech-
niques to solve a class of neutral delay parabolic differential equations. The main


