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A SPLITTING LEAST-SQUARES MIXED FINITE ELEMENT

METHOD FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

HONGFEI FU, HONGXING RUI1, HUI GUO, JIANSONG ZHANG, AND JIAN HOU

Abstract. In this paper, we propose a splitting least-squares mixed finite element method for
the approximation of elliptic optimal control problem with the control constrained by pointwise
inequality. By selecting a properly least-squares minimization functional, we derive equivalent two

independent, symmetric and positive definite weak formulation for the primal state variable and
its flux. Then, using the first order necessary and also sufficient optimality condition, we deduce
another two corresponding adjoint state equations, which are both independent, symmetric and

positive definite. Also, a variational inequality for the control variable is involved. For the
discretization of the state and adjoint state equations, either RT mixed finite element or standard
C0 finite element can be used, which is not necessary subject to the Ladyzhenkaya-Babuska-Brezzi
condition. Optimal a priori error estimates in corresponding norms are derived for the control,

the states and adjoint states, respectively. Finally, we use some numerical examples to validate
the theoretical analysis.
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1. Introduction

Optimal control problems are playing an increasingly important role in modern
scientific and engineering numerical simulations. Nowadays, finite element method
seems to be the most widely used numerical method in practical computation. The
readers are referred to, for example, Refs. [1, 2, 3, 4, 5] for systematic introductions
of finite element methods and optimal control problems.

In this paper, we are interested in the following convex quadratic optimal control
problem with the control constrained by pointwise inequality:

(1) min
u∈Uad

J (y, σ, u) =
1

2

(∫
Ω

(y − yd)
2 +

∫
Ω

(σ − σd)
2 + γ

∫
ΩU

u2

)
subject to

(2)


divσ + cy = f + Bu, in Ω,

σ +A∇y = 0, in Ω,

y = 0, on ∂Ω,

and

ξ1 ≤ u(x) ≤ ξ2, a.e. in ΩU .(3)

Here γ > 0 is a constant, Ω and ΩU ⊆ Ω are two bounded domain in R2, with
Lipschitz boundaries ∂Ω and ∂ΩU . A precise formulation of this problem including
a functional analytic setting is given in the next section.
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Classical mixed finite element methods (see Refs. [6, 7, 8, 9, 10]) have been
proved effectively for solving elliptic equations and fluid problems. They have
an advantage of approximating the unknown scalar variable and its diffusive flux
simultaneously. Besides, these methods can approximate the unknown variable
and its flux to a same order of accuracy. Recently, there are some research articles
on these methods for solving optimal control problems, see Refs. [11, 12, 13], for
example. However, it is well known that these methods usually produce a symmetric
but indefinite system for elliptic equations. Thus the popular conjugate gradient
(CG) or algebraic multi-grid (AMG) solvers can not be used for the solution of
linear algebraic equation systems.

To conquer these difficulties appeared in using classical mixed finite element
methods, least-squares mixed finite element method, for first-order elliptic mixed
system in unknown variable y and unknown velocity flux σ, was introduced by
Pehlivanov et al. [14]. It is well known that the least-squares mixed finite element
method has two typical advantages: First, it is not subjected to the Ladyzhenkaya-
Babuska-Brezzi consistency condition, so the choice of finite element spaces becomes
flexible; Second, it results in a symmetric and positive definite system, which can
be solved using those solvers such as CG and AMG quickly. The idea of splitting
least-squares was first proposed by Rui et al. in [15] for a reaction-diffusion equa-
tion, where by selecting a properly least-squares functional, the authors derived
two independent, symmetric and positive definite equations, respectively, for the
unknown state variable y and its flux σ. Then it is applied to solve linear and non-
linear parabolic equations [16], sobolev equations [17], pseudo-parabolic equations
[18], and nonlinear convection-diffusion equations [19] and so on.

In this paper, we apply the splitting least-squares mixed finite element method
for the discretization of elliptic optimal control problem. Pointwise inequality con-
straints on the control variable are considered. We derive optimal a priori error
estimates, respectively, for the optimal control u∗ in L2(ΩU )-norm, which is ap-
proximated by piecewise constant or piecewise linear discontinuous elements; for
the primal state y∗ and adjoint state z∗ both in L2(Ω)-norm and H1(Ω)-norm,
which are approximated by standard piecewise linear C0 finite elements; for the
flux state σ∗ and adjoint state ω∗ in H(div; Ω)-norm, which are approximated by
the lowewt-order RT mixed finite elements or standard piecewise linear C0 finite
elements. Here, the Ladyzhenkaya-Babuska-Brezzi consistency condition for the
discretization spaces of y∗ and σ∗ is not needed.

This paper is organized as follows. In Sect. 2, we introduce the optimal control
problem and derive the continuous optimality conditions based on the idea of least-
squares. In Sect. 3, a splitting least-squares mixed finite element approximation to
the continuous optimal control problem is proposed, and then we derive the corre-
sponding discrete optimality conditions. In Sect. 4, some a priori error estimates
for the states, adjoint states and control are derived under control constrained by
pointwise inequality. In Sect. 5, we conduct some numerical experiments to ob-
serve the convergence behavior of the numerical scheme. In the last section, some
concluding remarks are given.

In the following, we employ the standard notations Wm,p(Ω) for Sobolev spaces
on Ω with norm ∥ · ∥Wm,p(Ω) and seminorm | · |Wm,p(Ω). We set Wm,p

0 (Ω) = {v ∈
Wm,p(Ω) : v = 0 on ∂Ω}. For p = 2, we denote Hm(Ω) = Wm,2(Ω) and Hm

0 (Ω) =

Wm,2
0 (Ω). In addition, C denotes a general positive constant which is independent

of the spatial mesh parameters.


