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ANALYSIS OF OPTIMAL ERROR ESTIMATES AND

SUPERCONVERGENCE OF THE DISCONTINUOUS GALERKIN

METHOD FOR CONVECTION-DIFFUSION PROBLEMS IN ONE

SPACE DIMENSION

MAHBOUB BACCOUCH AND HELMI TEMIMI

Abstract. In this paper, we study the convergence and superconvergence properties of the dis-
continuous Galerkin (DG) method for a linear convection-diffusion problem in one-dimensional
setting. We prove that the DG solution and its derivative exhibit optimal O(hp+1) and O(hp)
convergence rates in the L2-norm, respectively, when p-degree piecewise polynomials with p ≥ 1
are used. We further prove that the p-degree DG solution and its derivative are O(h2p) supercon-
vergent at the downwind and upwind points, respectively. Numerical experiments demonstrate
that the theoretical rates are optimal and that the DG method does not produce any oscillation.
We observed optimal rates of convergence and superconvergence even in the presence of boundary
layers when Shishkin meshes are used.
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1. Introduction

Problems involving convection and diffusion arise in several important applications
throughout science and engineering, including fluid flow, heat transfer, among many
others. Their typical solutions exhibit boundary and/or interior layers. It is well-
known that the standard continuous Galerkin finite element method exhibits poor
stability properties for singularly perturbed problems. One of the difficulties in
numerically computing the solution of singularly perturbed problems lays in the
so-called boundary layer behavior. In the presence of sharp boundary or interior
layers, nonphysical oscillations pollute the numerical solution throughout the com-
putational domain. In other words, the solution varies very rapidly in a very thin
layer near the boundary. Consult [49, 59, 58, 40, 55, 43] and the references cited
therein for a detailed discussion on the topic of singularly perturbed problems.
The discontinuous Galerkin (DG) methods have become very popular numerical
techniques for solving ordinary and partial differential equations. They have been
successfully applied to hyperbolic, elliptic, and parabolic problems arising from a
wide range of applications. Over the last years, there has been much interest in
applying the DG schemes to problems where the diffusion is not negligible and to
convection-diffusion problems.

The DG method considered here is a class of finite element methods using com-
pletely discontinuous piecewise polynomials for the numerical solution and the
test functions. DG method combines many attractive features of the classical
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finite element and finite volume methods. It is a powerful tool for approximat-
ing some differential equations which model problems in physics, especially in
fluid dynamics or electrodynamics. Comparing with the standard finite element
method, the DG method has a compact formulation, i.e., the solution within each
element is weakly connected to neighboring elements. DG method was initially
introduced by Reed and Hill in 1973 as a technique to solve neutron transport
problems [46]. In 1974, LaSaint and Raviart [42] presented the first numerical
analysis of the method for a linear advection equation. Since then, DG meth-
ods have been used to solve ordinary differential equations [7, 23, 41, 42], hyper-
bolic [19, 20, 21, 22, 34, 35, 45, 38, 39, 30, 57, 44, 2, 3, 16, 6] and diffusion and
convection-diffusion [17, 18, 53, 36] partial differential equations. The proceedings
of Cockburn et al. [33] an Shu [51] contain a more complete and current survey of
the DG method and its applications.

In recent years, the study of superconvergence of numerical methods has been an
active research field in numerical analysis. Superconvergence properties for finite
element and DG methods have been extensively studied in [7, 11, 37, 42, 56, 52] for
ordinary differential equations, [2, 3, 16, 6, 4, 15, 13, 7, 10] for hyperbolic problems
and [14, 5, 9, 10, 16, 24, 27, 30] for diffusion and convection-diffusion problems,
just to mention a few citations. A knowledge of superconvergence properties can
be used to (i) construct simple and asymptotically exact a posteriori estimates of
discretization errors and (ii) help detect discontinuities to find elements needing
limiting, stabilization and/or refinement. Typically, a posteriori error estimators
employ the known numerical solution to derive estimates of the actual solution
errors. They are also used to steer adaptive schemes where either the mesh is
locally refined (h-refinement) or the polynomial degree is raised (p-refinement). For
an introduction to the subject of a posteriori error estimation see the monograph
of Ainsworth and Oden [12].

The first superconvergence result for standard DG solutions of hyperbolic PDEs
appeared in Adjerid et al. [7]. The authors showed that standard DG solutions
of one-dimensional hyperbolic problems using p-degree polynomial approximations
exhibit an O(hp+2) superconvergence rate at the roots of (p + 1)-degree Radau
polynomial. They further established a strong O(h2p+1) superconvergence at the
downwind end of every element. Recent work on other numerical methods for
convection-diffusion and for pure diffusion problems has been reviewed by Cock-
burn et al. [32]. In particular, Baumann and Oden [18] presented a new numerical
method which exhibits the best features of both finite volume and finite element
techniques. Rivière and Wheeler [47] introduced and analyzed a locally conservative
DG formulation for nonlinear parabolic equations. They derived optimal error esti-
mates for the method. Rivière et al. [48] analyzed several versions of the Baumann
and Oden method for elliptic problems. Wihler and Schwab [54] proved robust
exponential rates of convergence of DG methods for stationary convection-diffusion
problems in one space dimension. We also mention the work of Castillo, Cockburn,
Houston, Süli, Schötzau and Schwab [50, 25, 26] in which optimal a priori error es-
timates for the hp-version of the local DG (LDG) method for convection-diffusion
problems are investigated. Later Adjerid et al. [8, 9] investigated the superconver-
gence of the LDG method applied to diffusion and transient convection-diffusion
problems. More recently, Celiker and Cockburn [27] proved a new superconver-
gence property of a large class of finite element methods for one-dimensional steady
state convection-diffusion problems. We also mention the recent work of Shu et al.


