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FINITE DIFFERENCE SCHEMES FOR THE KORTEWEG-DE

VRIES-KAWAHARA EQUATION

UJJWAL KOLEY

Abstract. We are concerned with the convergence of fully discrete finite difference schemes for
the Korteweg-de Vries-Kawahara equation, which is a transport equation perturbed by dispersive
terms of third and fifth order. It describes the evolution of small but finite amplitude long waves
in various problems in fluid dynamics. Both the decaying case on the full line and the periodic
case are considered. If the initial data u|t=0 = u0 are of high regularity, u0 ∈ H

5(R), the schemes
are shown to converge to a classical solution. Finally, the convergence is illustrated by an example.
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1. Introduction

1.1. The Equation. This paper is concerned with the Korteweg-de Vries-Kawahara
(Kawahara) equation, which reads

(1)

{
ut + uux + ∂3

xu = ∂5
xu, (x, t) ∈ ΠT ,

u(x, 0) = u0(x), x ∈ R,

where ΠT = R× (0, T ] with fixed T > 0, u0 the given initial data, and u : ΠT 7→ R

is the unknown scalar map. It is well known that the one-dimensional waves of
small but finite amplitude in dispersive systems (e.g., the magneto-acoustic waves
in plasmas, the shallow water waves, the lattice waves, etc.) can be described by
the Korteweg-de Vries (KdV) equation, given by

(2) ut + uux + ∂3
xu = 0,

which admits either compressive or rarefactive steady solitary wave solution (by a
solitary water wave, we mean a travelling wave solution of the water wave equations
for which the free surface approaches a constant height as |x| → ∞) according to
the sign of the dispersion term (the third order derivative term). In fact, in the
galaxy of dispersive equations used to model waves phenomena, KdV equation is
undoubtedly the brightest star.

However, under certain circumstances, it might happen that the coefficient of
the third order derivative in the KdV equation becomes significantly small or even
zero. In such a scenario, it is customary to take account of the higher order effect
of dispersion in order to balance the nonlinear effect. As a result one may obtain a
generalized nonlinear dispersive equation, known as Kawahara equation, which has
a form of the KdV equation with an additional fifth order derivative term, given
by (1). The Kawahara equation, an important nonlinear dispersive wave equation,
describes solitary wave propagation in media in which the first order dispersion
is anomalously small. A more specific physical background of this equation was
introduced by Hunter and Scheurle [11], where they used it to describe the evolution
of solitary waves in fluids in which the Bond number is less than but close to 1
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the Froude number is close to 1. In the literature, this equation is also referred to
as the fifth order KdV equation or singularly perturbed KdV equation. The fifth
order term ∂5

xu is called the Kawahara term.

1.2. Mathematical Background. There exists a fairly satisfactory well posed-
ness theory for both KdV and Kawahara equations. The literature herein is sub-
stantial, and we will here only give a non-exhaustive overview. Within the existing
framework, we mention the remarkable paper by Kenig et al., where the authors
provide the local existence theory for the KdV equation in the Sobolev SpaceHs, for
s > −3/4. For a completely satisfactory well posedness theory for KdV equation,
we refer to the monograph of Tao [23], and references therein.

Over the past four decades, there has been an increased interest to understand
the solitary wave solutions of the Kawahara equation [6, 14, 16, 17]. It is found
that, similar to the KdV equation, the Kawahara equation also has solitary wave
solutions which decay rapidly to zero as t → ∞, but unlike the KdV equation
whose solitary wave solutions are non-oscillating, the solitary wave solutions of the
Kawahara equation have oscillatory trails. This shows that the Kawahara equation
is not only similar but also different from the KdV equation in the properties of
solutions. The strong physical background of the Kawahara equation and such
similarities and differences between it and the KdV equation in both the form and
the behavior of the solution render the mathematical treatment of this equation
particularly interesting. The Cauchy problem given by (1) has been studied by a
few authors [3,7,15,24,25]. In that context, we mention the paper [3], where authors
have shown that the problem (1) has a local solution u ∈ C([−T, T ];Hr(R)) if
u0 ∈ Hr(R) and r > −1. This local result combined with the energy conservation
law yields that (1) has a global solution u ∈ C([−∞,∞];L2(R)) if u0 ∈ L2(R).
Furthermore, the above mentioned results for (1) has been improved can be found
in [25]. They even managed to prove local existence of solutions for u0 ∈ Hr(R), for
r ≥ −7/5 and global existence for u0 ∈ Hr(R), for r > −1/2. For the well posedness
theory of (1), we refer to [7] and for the regularity results of such solutions, we refer
to [20].

1.3. Numerical Approaches. There has been a number of papers involving the
numerical computation of solutions of the Cauchy problem (1). For the KdV equa-
tion, a galore of numerical schemes available in literature. We just mention an
interesting fact, and rarely referred to in the current literature, is that the first
mathematical proof of existence and uniqueness of solutions of the KdV equation,
was accomplished by Sjöberg [22] in 1970, using a finite difference approximation.
His approach is based on a semi-discrete approximation where one discretizes the
spatial variable, thereby reducing the equation to a system of ordinary differen-
tial equations. However, we stress that for numerical computations also this set
of ordinary differential equations will have to be discretized in order to be solved.
Therefore, to have a completely satisfactory numerical method, one seeks a fully
discrete scheme that reduces the actual computation to a solution of a finite set of
algebraic equations. In fact, this is accomplished in a recent paper by Holden et
al. [8], both in the periodic case and on the full line.

A popular numerical approach has been the application of various spectral meth-
ods. Fourier-Galerkin spectral method for the KdV and Kawahara equations has
been studied in [1, 18, 19]. Pseudospectral method or spectral collocation method
have been used to solve PDEs like KdV, Kawahara equations in [4, 5]. On the
other hand, in [18], an error estimate for a simple spectral fully discrete scheme


