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LINEAR AND QUADRATIC FINITE VOLUME METHODS ON

TRIANGULAR MESHES FOR ELLIPTIC EQUATIONS WITH

SINGULAR SOLUTIONS

GUANGHAO JIN, HENGGUANG LI, QINGHUI ZHANG, AND QINGSONG ZOU

Abstract. This paper is devoted to the presentation and analysis of some linear and quadratic
finite volume (FV) schemes for elliptic problems with singular solutions due to the non-smoothness
of the domain. Our FV schemes are constructed over specially-designed graded triangular meshes.

We provide sharp parameter selection criteria for the graded mesh, such that both the linear and
quadratic FV schemes achieve the optimal convergence rate approximating singular solutions in
H1. In addition, we show that on the same mesh, a linear FV scheme obtains the optimal rate of

convergence in L2. Numerical tests are provided to verify the analysis.

Key words. Finite volume method, singular solution, optimal convergence rate.

1. Introduction

With good local flux-conservation properties, the finite volume method (FVM)
is used in a wide range of computations, especially in computational fluid dynamics
(see [5, 25, 28, 30, 39, 40, 41, 44] and references therein). The mathematical theory
of FVM [19, 30, 34] has not been fully developed, at least, not as satisfactory as
that for the finite element method. Most works concentrate on linear or quadratic
schemes on quasi-uniform meshes (see e.g., [4, 7, 18, 23, 34, 35, 45]). In addition,
a few studies have been conducted for high order FV schemes. We here mention
1D high order FV schemes [8, 42], high order FV schemes over rectangular meshes
[6, 46], and high order FV schemes over triangular meshes [11, 12]. These high
order methods are efficient when the solution of the problem is sufficiently smooth.

It is well known that the solution of elliptic equations may have singularities due
to the non-smoothness of the domain, even when the other given data are smooth.
In particular, consider the Poisson problem

−∆u = f in Ω, u = 0 on ∂Ω,(1)

where Ω is a bounded polygonal domain in R2. Then, given f ∈ H−1(Ω) = H1
0 (Ω)

′,
there exists a unique solution u ∈ H1

0 (Ω) to (1), defined by the variational form

(2) a(u, v) =

∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx, ∀ v ∈ H1
0 (Ω).
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In the case that the boundary ∂Ω is smooth, we have the full regularity estimate
for the solution [17, 20, 36],

∥u∥Hm+1(Ω) ≤ C∥f∥Hm−1(Ω), m ≥ 0,(3)

where the constant C > 0 depends on the domain, but not on f . On a polygo-
nal domain Ω, however, the full regularity result holds only in the interior region
away from the vertices. On the entire domain Ω, the solution u may only belong
to H1+s(Ω) for a given smooth function f , where s is fixed and depends on the
geometry of the boundary.

The singularity in the solution can significantly slow down the convergence rate
of the numerical approximation, as well as raise concerns on the theoretical justifi-
cation of the numerical scheme. Compared with the tremendous effort to develop
optimal finite element algorithms [1, 2, 3, 22, 29, 33, 38, 43], fewer results are avail-
able on the FVMs for singular solution, and most of them only concern linear FV
schemes. See [9, 15] and reference therein for some relevant works. In particular,
three linear FVMs are proposed in [15] to approximate solutions of equation (1)
with corner singularities. The mesh and dual mesh are carefully designed, such
that the associated FV solutions achieve the optimal rate of convergence that is
expected for smooth solutions.

In this paper, we develop new linear and quadratic FVMs approximating singular
solutions of equation (1). In particular, we give a simple and explicit construction of
graded meshes and the dual meshes, such that the associated linear and quadratic
FV solutions achieve the optimal convergence rate in the H1-norm. In addition, we
will show that the L2-convergence rate of the proposed linear FVM is also optimal.
Our analysis is based on the stability of the FV schemes, sharp regularity estimates
in suitable weighted Sobolev spaces, and rigorous interpolation error estimates in
these spaces. These results extend to more general elliptic equations. It is also
possible to apply the analytical tools developed here to other high order well-posed
FVMs.

The rest of the paper is organized as follows. In Section 2, we introduce the linear
and quadratic FV schemes and the graded triangular meshes. Determined by a set
of grading parameters, these graded meshes have good geometric properties that will
also be discussed. In Section 3, we present the detailed analysis in suitable function
spaces and obtain the main result of the paper. In particular, we give regularity
estimates, interpolation error estimates, and the continuity estimates of the FV
bilinear forms. Using these results, in Theorem 3.9, we provide sharp parameter
selection criteria for the graded mesh, such that the optimal convergence rate is
recovered for the associated FV solutions in the H1-norm. The L2 error estimate
for a linear FV algorithm is summarized in Corollary 3.11. In Section 4, we report
numerical results from both linear and quadratic FV schemes. These results are in
strong agreement with our theoretical prediction, and hence verify the theory.

Throughout the paper, by a ≃ b, we mean that there are constants C1, C2 > 0,
independent of the mesh level, such that C1b ≤ a ≤ C2b. The generic constant
C > 0 in our analysis below may be different at different occurrences. It will
depend on the computational domain, but not on the functions involved in the
estimates or the mesh level in the FV algorithms.


