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MONOTONICITY/SYMMETRICITY PRESERVING RATIONAL

QUADRATIC FRACTAL INTERPOLATION SURFACES

ARYA KUMAR BEDABRATA CHAND AND NALLAPU VIJENDER

Abstract. This paper presents the theory of C1-rational quadratic fractal interpolation surfaces
(FISs) over a rectangular grid. First we approximate the original function along the grid lines of
interpolation domain by using the univariate C1-rational quadratic fractal interpolation functions
(fractal boundary curves). Then we construct the rational quadratic FIS as a blending combination
with the x-direction and y-direction fractal boundary curves. The developed rational quadratic
FISs are monotonic whenever the corresponding fractal boundary curves are monotonic. We derive
the optimal range for the scaling parameters in both positive and negative directions such that
the rational quadratic fractal boundary curves are monotonic in nature. The relation between
x-direction and y-direction scaling matrices is deduced for symmetric rational quadratic FISs for
symmetric surface data. The presence of scaling parameters in the fractal boundary curves helps
us to get a wide variety of monotonic/symmetric rational quadratic FISs without altering the given
surface data. Numerical examples are provided to demonstrate the comprehensive performance
of the rational quadratic FIS in fitting a monotonic/symmetric surface data. The convergence
analysis of the monotonic rational quadratic FIS to the original function is reported.
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1. Introduction

The field of fractals [21] is introduced as an interdisciplinary area between
branches of mathematics and physics, and later applied successfully in different
areas of science and engineering. Fractals provide a powerful and effective tool to
approximate projections of physical objects such as coastlines, profiles of moun-
tains, plants as well as experimental data that have non-integer dimension. To
provide an alternative tool for traditional interpolants, Barnsley [3] introduced the
concept of fractal interpolation functions (FIFs) via iterated function system (IFS).
A FIF contains a set of free variables called the scaling parameters. The variation
of scaling parameters helps us to generate a wide variety of smooth or non-smooth
FIFs for the same interpolation data. Restricting the scaling parameters with re-
spect to the horizontal scaling parameters, Barnsley and Harrington [4] developed a
method to construct a differentiable FIF that interpolates the prescribed data if the
values of derivatives of an original function are known at the initial end-point of the
interval. The fractal polynomial splines with general type of boundary conditions
are studied recently by (i) constructive approach in [9, 14] (ii) α-fractal functions
in [11, 22].

The study of fractal surfaces are useful in scientific applications such as image
processing [23], geology [15], chemistry [24], etc. Geronimo and Hardin [18] de-
veloped the fractal interpolation surface on flexible domains. Simultaneously, by
using barycentric co-ordinates, Zhao [26] gave two algorithms that generalize the
earlier construction described in [18]. Xie and Sun [25] constructed a bivariate FIS
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on rectangular grids with arbitrary contraction factors and without any restriction
on boundary data. Dalla [16] extemporized this construction by using collinear
boundary points, and demonstrated that the attractor is a continuous FIS. Sub-
sequent developments in this direction are carried out by Bouboulis and Dalla [6],
Chand and Navascués [10], Feng et al. [17], Chand [12]. However, the constructions
mentioned above may not produce the monotonic/symmetric fractal surfaces even
if the given surface data is monotonic/symmetric.

Although the field of interpolation has been cultivated for centuries, the demand
for more effective tools is very much active due to the modeling problems in com-
plexity, and the manufacturing requirements in the early stage of surface design.
Spline representation to visualize a scientific data is of great significance in com-
puter graphics, geometric modeling, and numerical analysis. Although splines are
smooth, they may not fulfill the user’s qualitative requirements. For instance, the
given data may be generated from a monotone/symmetric surface but the resulting
interpolant may not satisfy these properties, and induce artificial or exaggerated
hills and valleys in the interpolating surface. For the case of surface generation,
several non-fractal methods have been proposed by a number of authors which
preserves properties such as positivity, monotonicity and/or convexity of the data.
Beatson and Ziegler [5] presented a monotonicity preserving surface interpolant
over a triangular grid. This surface is uniquely determined by the functional values
and first order partial derivatives at the vertices of the triangular grid. Asatu-
ryan and Unswoth [1] developed a monotonicity preserving biquadratic splines over
rectangular grids. In their approach, a modification at x-location of one edge of
a sub-rectangle gives a variation throughout the grid for all sub-rectangle edges
located at the original x-values, and hence the scheme is global. By developing
the necessary and sufficient conditions on the first and mixed partial derivatives
at grids, Carlson and Fritsch [7] produced a monotonic surface interpolant over
rectangular grid. Kouibia and Pasadas [20] presented an approximation problem of
parametric curves and surfaces from the Lagrange or Hermite data set. However,
the shape preserving interpolation technique for the surface generation problem via
fractal technique is not yet initiated. This paper specifically concentrates on the
visualization of the monotonic/symmetric surface data arranged on a rectangular
grid in the form of rational quadratic FISs.

In order to show the deficiency of the classical blending C1- cubic spline sur-
face scheme, consider a monotonically increasing and symmetric surface data as
in Table 1. For simplicity of presentation, we have used triplet (., ., .), where the
first component indicates function value and second, third components represent
the first order partial derivatives with respect to x-direction and y-direction, all are
evaluated at the typical point (xi, yj). It can be easily seen that although surface
data in Table 1 is increasing, the classical surface in Fig. 1 is not increasing.

Table 1. Monotonically increasing symmetric surface data.

↓ x/y → 1 2 3 4
1 (1,1,1) (2,4,2) (3,9,3) (4,16,4)
2 (2, 2,4) (4, 8, 8) (6, 18, 12) (8,32,16)
3 (3, 3, 9 ) (6, 12, 18) (9, 27, 27) (12, 48, 36)
4 (4, 4, 16 ) (8, 16, 32 ) (12, 36, 48 ) (16, 64, 64 )

Not only this blending surface scheme, but also several classical and fractal sur-
face interpolation schemes do not preserve the monotonicity attached with given


