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QR VERSUS CHOLESKY: A PROBABILISTIC ANALYSIS
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Abstract. Least squares solutions of linear equations Ax = b are very important for parame-
ter estimation in engineering, applied mathematics, and statistics. There are several methods for
their solution including QR decomposition, Cholesky decomposition, singular value decomposition
(SVD), and Krylov subspace methods. The latter methods were developed for sparse A matrices
that appear in the solution of partial differential equations. The QR (and its variant the RRQR)
and the SVD methods are commonly used for dense A matrices that appear in engineering and
statistics. Although the Cholesky decomposition is backward stable and known to have the least
operational count, several authors recommend the use of QR in applications. In this article, we
take a fresh look at least squares problems for dense A matrices with full column rank using
numerical experiments guided by recent results from the theory of random matrices. Contrary to
currently accepted belief, comparisons of the sensitivity of the Cholesky and QR solutions to ran-
dom parameter perturbations for various low to moderate condition numbers show no significant
difference to within machine precision. Experiments for matrices with artificially high condition
numbers reveal that the relative difference in the two solutions is on average only of the order
of 10−6. Finally, Cholesky is found to be markedly computationally faster than QR – the mean
computational time for QR is between two and four times greater than Cholesky, and the standard
deviation in computation times using Cholesky is about a third of that of QR. Our conclusion
in this article is that for systems with Ax = b where A has full column rank, if the condition
numbers are low or moderate, then the normal equation method with Cholesky decomposition is
preferable to QR.
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1. Introduction

The solution of linear equations of the type Ax = b, where A ∈ R
m×n is fun-

damental to problems in science, engineering, applied mathematics and statistics.
However, depending on the area, the problems have different features. For instance,
linear PDEs in applied mathematics are characterized by a sparse matrix A with a
large value of n (typically at least in the thousands), whereas classical parameter
estimation problems in engineering and statistics are characterized by a dense ma-
trix A with moderately large value for n (in the tens or hundreds). Furthermore,
problems in engineering tend to be minimum norm and least squares if there is
periodicity in the data, or have m ≥ n and rank(A) = n. In recent years, the area
of smart materials and structures have yielded linear compact operator equations,
which upon discretization result in least squares problems of moderately sized A
matrix [1, 2, 3, 4].

Methods for the solution of linear equations include QR decomposition, Cholesky
decomposition, singular value decomposition (SVD), Krylov subspace and Multi-
grid methods. Krylov subspace methods such as the generalized minimal residual
method (GMRES) [5, 6] and the Lanczos method were developed for sparse A ma-
trices that appear in the solution of partial differential equations [7]. Multigrid
methods are useful in solving discretized differential equations [7]. The QR method
of Francis [8, 9] and the singular value decomposition (SVD) methods are commonly
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used for dense A matrices that appear in engineering and statistics [3]. Although
the Cholesky decomposition is backward stable [10], several authors recommend
the use of QR in applications [14, 15].

Assuming rank(A) = n, the Cholesky method for the solution of Ax = b involves
the formulation of the normal equations AT Ax = AT b, decomposing AT A = LLT

where L is a lower triangular matrix, and then solving for x using forward and
backward substitutions. The basic QR method involves the solution of Rx = QT b.

A second class of applications where the Cholesky method might find favor are
the minimum norm – least squares problems. Consider a linear system Ax = b,
where A ∈ R

m×n and rank(A) = p < min{m,n}. We assume that p is unknown.
A variant of the QR — the rank revealing QR (RRQR) [11, 12, 13] — may be used
to find p and obtain a thin QR decomposition of A. Suppose A = QR where Q
is a m × p matrix with orthonormal columns and R is an upper-triangular p × n
matrix. The normal equation then reduces to (RRT ) v = QT b and x = RT v.

(i) One method for solving for x, which we refer to as QRC, computes a
Cholesky factorization of the reduced normal equations. The matrix RRT

is a non-singular p × p matrix. Therefore, we may compute a Cholesky
factorization LLT = RRT and proceed to solve for v using forward and
backward substitutions. Once v is found, x is computed.

(ii) Another procedure to solve for x is the complete orthogonal factorization
method (COF) [14], in which a QR factorization of RT is computed. Sup-
pose RT = U S, where U is a n× p matrix with orthonormal columns and
S is a nonsingular and upper-triangular p× p matrix. Then x = U S v and
the normal equation yields ST S v = QT b. We may solve for z = S v from
ST z = QT b and then find x = U z.

In [14, 15] one finds a sensitivity analysis of the normal equation method, com-
puting the sensitivity of the system to perturbations. The analysis looks at the
upper bounds, which are not indicative of the behavior of the normal equation
method for low to moderate conditioned systems. A perturbation analysis for the
QR decomposition can be found in [16]. A related analysis is found in [17]. An
error analysis of the Cholesky method is done in [18] and for positive semidefinite
matrices in [10]. In Trefethen and Bau [15], an artificial example is constructed
to show that the QR method should be considered to be superior to the normal
equation method. The argument presented is that the normal equation method is
susceptible to larger errors in the solution if the condition number κ2 is at least as
large as 1/

√
ǫ, where ǫ is the machine precision. Golub and Van Loan [14] state that

the normal equation method is less accurate than a stable QR approach, though
when the systems are ill-conditioned with large residuals, both methods are apt
to produce comparable inaccurate results, which is a somewhat different statement
than that of Trefethen. On the other hand, Higham[10] states that the Cholesky
decomposition is one of the most numerically stable of all matrix algorithms, but
the normal equation method is guaranteed to be backward stable only for well-
conditioned matrices [19]. Trefethen [15] asserts that the SVD method is the only
fully stable algorithm for solving rank-deficient problems. For high condition num-
ber systems (that is, 1/

√
ǫ ≤ κ(A) ≤ 1/ǫ), it is possible for the solution of the

normal equations to be highly erroneous for some vectors b̄. An example verifying
this is presented in Trefethen [15].

From the above discussion, it may be gathered that the authors were very con-
cerned about backward stability for all matrices, and one can categorically say
that for condition numbers greater than 1√

ǫ
, the QR method is preferable to the


