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Abstract. We consider a fully discrete, efficient algorithm for magnetohydrodynamic (MHD)

flow that is based on the Elsässer variable formulation and a timestepping scheme that decouples
the MHD system but still provides unconditional stability with respect to the timestep. We prove

stability and optimal convergence of the scheme, and also connect the scheme to one based on
handling each decoupled system with a penalty-projection method. Numerical experiments are

given which verify all predicted convergence rates of our analysis on some analytical test problems,

show the results of the scheme on a set of channel flow problems match well the results found when
the computation is done with MHD in primitive variable, and finally show the scheme performs

well on a channel flow over a step.
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1. Introduction

We consider the efficient and accurate numerical approximation of magnetohy-
drodynamic (MHD) flow, which is governed by the system of evolution equations
[19, 5]

ut + (u · ∇)u− s(B · ∇)B − ν∆u+∇p = f,(1)

∇ · u = 0,(2)

Bt + (u · ∇)B − (B · ∇)u− νm∆B +∇λ = ∇× g,(3)

∇ ·B = 0,(4)

in Ω × (0, T ), where Ω is the domain of the fluid, u is the velocity of the fluid,
p is a modified pressure, B is the magnetic field, s is the coupling number, ν is
the kinematic viscosity, νm is the magnetic resistivity, f is the body force, and
∇× g is the forcing on the magnetic field. The physical principles governing such
flows are that when an electrically conducting fluid moves in a magnetic field,
the magnetic field induces currents in the fluid, which in turn creates forces on
the fluid and also alters the magnetic field. In the recent years, the study of MHD
flows has become important due to applications in, e.g. astrophysics and geophysics
[17, 23, 12, 10, 4, 6], liquid metal cooling of nuclear reactors [3, 15, 26], and process
metallurgy [8].

A fundamental difficulty in simulating MHD flow is solving the fully coupled
linear systems that arise in common discretizations of (1)-(4). It is an open problem
how to decouple the equations in an unconditionally stable way (with respect to
the timestep size), and thus timestepping methods that decouple the equations
are prone to unstable behavior without using excessively small timestep sizes. To
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confront this issue, an excellent idea was presented by Trenchea in [27]: if one
rewrites the MHD system in terms of Elsässer variables (defined below), then an
unconditionally stable, decoupled, timestepping algorithm can be created. Analysis
of this algorithm in a semidiscrete setting (temporal discretization only) with a
defect correction method was performed in [28], but no numerical experiments
were performed beyond convergence rate verification. The purpose of this paper is
1) to analyze and test Trenchea’s algorithm in a fully discrete setting, i.e. together
with a finite element spatial discretization, 2) to extend the algorithm and analysis
to a more efficient class of timestepping algorithms (penalty-projection type), and
3) test the algorithms on some benchmark problems and compare to simulations
with primitive variables.

The Elsässer formulation of MHD was first proposed by W. Elsässer in 1950
[11], and since then has been used in several analytical studies, e.g. [25, 9, 22]. To
derive it, begin by splitting the magnetic field into two parts,

√
sB =:

√
sB0 +

√
sb

(mean and fluctuation, respectively), with B0 = B0(t). For boundary conditions,
we assume the Dirichlet condition B = B0 on ∂Ω, and homogeneous Dirichlet
conditions for the velocity, u = 0, and magnetic field fluctuations, b = 0. The
system (1)-(4) can now be written as

ut + (u · ∇)u− s(B0 · ∇)b− s(b · ∇)b− ν∆u+∇p = f,(5)

∇ · u = 0,(6)

bt + (u · ∇)b− (B0 · ∇)u− (b · ∇)u− νm∆b+∇λ = ∇× g − dB0

dt
,(7)

∇ · b = 0.(8)

Rescaling (7) by
√
s, adding (subtracting) (5) to (from) (7) and setting f1 :=

f +∇× g− dB0

dt , f2 := f −
√
s(∇× g+ dB0

dt ), q := p+
√
sλ and r := p−

√
sλ gives

(u+
√
sb)t + (u · ∇)(u+

√
sb)− (

√
sB0 · ∇)(u+

√
sb)

−(
√
sb · ∇)(u+

√
sb)− ν∆u− νm∆(

√
sb) +∇q = f1,

∇ · (u+
√
sb) = 0,

(u−
√
sb)t + (u · ∇)(u−

√
sb) + (

√
sB0 · ∇)(u−

√
sb)

+(
√
sb · ∇)(u−

√
sb)− ν∆u+ νm∆(

√
sb) +∇r = f2,

∇ · (u−
√
sb) = 0.

Now defining v = u +
√
sb, w = u −

√
sb, B̃0 =

√
sB0 produces the Elsässer

formulation

vt + w · ∇v − (B̃0 · ∇)v +∇q − ν + νm
2

∆v − ν − νm
2

∆w = f1,(9)

∇ · v = 0,(10)

wt + v · ∇w + (B̃0 · ∇)w +∇r − ν + νm
2

∆w − ν − νm
2

∆v = f2,(11)

∇ · w = 0.(12)

This paper is arranged as follows. In section 2, we provide notation and math-
ematical preliminaries that will allow for a smooth analysis to follow. Section
3 presents the fully discrete scheme, and proves stability and convergence for it.
Section 4 presents a penalty-projection variation of the scheme, and proves it is
equivalent to the scheme of Section 3 when the the penalty parameter is large.
Section 5 presents numerical experiments and conclusions are drawn in section 6.


