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LOCAL AND PARALLEL FINITE ELEMENT ALGORITHM

BASED ON MULTILEVEL DISCRETIZATION FOR

EIGENVALUE PROBLEMS

XIAOLE HAN, YU LI, HEHU XIE, AND CHUNGUANG YOU

Abstract. In this paper, a local and parallel algorithm based on the multilevel discretization is
proposed for solving the eigenvalue problem by the finite element method. With this new scheme,
the eigenvalue problem solving in the finest grid is transferred to solutions of the eigenvalue
problems on the coarsest mesh and a series of solutions of boundary value problems on each level
mesh. Therefore this type of multilevel local and parallel method improves the overall efficiency
of solving the eigenvalue problem. Some numerical experiments are presented to validate the
efficiency of the new method.
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1. Introduction

Solving large scale eigenvalue problems becomes a fundamental problem in mod-
ern science and engineering society. However, it is always a very difficult task to
solve high-dimensional eigenvalue problems which arise from physical and chem-
istry sciences. Xu and Zhou [28] give a type of two-grid discretization method
to improve the efficiency of the solution of eigenvalue problems. By the two-grid
method, the solution of eigenvalue problem on a fine mesh is reduced to a solution
of eigenvalue problem on a coarse mesh (which depends on the fine mesh) and a so-
lution of the corresponding boundary value problem on the fine mesh [28]. For more
details, please read [25, 26]. Combing the two-grid idea and the local and parallel
finite element technique [27], a type of local and parallel finite element technique
to solve the eigenvalue problems is given in [29] (also see [10]). Recently, a new
type of multilevel correction method for solving eigenvalue problems which can be
implemented on multilevel grids is proposed in [14]. In the multilevel correction
scheme, the solution of eigenvalue problem on the finest mesh can be reduced to
a series of solutions of the eigenvalue problem on a very coarse mesh (independent
of the finest mesh) and a series of solutions of the boundary value problems on the
multilevel meshes. The multilevel correction method gives a way to construct a
type of multigrid scheme for the eigenvalue problem [15].

In this paper, we propose a type of multilevel local and parallel scheme to
solve the eigenvalue problem based on the combination of the multilevel correction
method and the local and parallel technique. The special property of this scheme
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is that we can do the local and parallel computing for any level grids and the mesh
size of the original coarse triangulation is independent of the finest triangulation.
With this new method, the solution of the eigenvalue problem is not going to be
more difficult than the solution of the boundary value problems by the local and
parallel algorithm since the main part of the computation in the multilevel local
and parallel method is solving the boundary value problems.

The standard Galerkin finite element method for eigenvalue problems has been
extensively investigated, e.g. Babuška and Osborn [2, 3], Chatelin [8] and references
cited therein. There also exists analysis for the local and parallel finite element
method for the boundary value problems and eigenvalue problems [10, 21, 22, 27,
28, 29]. Here we adopt some basic results in these papers for our analysis. The
corresponding error and computational work estimates of the proposed multilevel
local and parallel scheme for the eigenvalue problem will be analyzed. Based on the
analysis, the new method can obtain optimal errors with an optimal computational
work in each processor.

An outline of this paper goes as follows. In the next section, a basic theory about
the local error estimate of the finite element method is introduced. In Section 3, we
introduce the finite element method for the eigenvalue problem and the correspond-
ing error estimates. A local and parallel type of one correction step and multilevel
correction algorithm will be given in Section 4. The estimate of the computational
work for the multilevel local and parallel algorithm is presented in section 5. In Sec-
tion 6, three numerical examples are presented to validate our theoretical analysis
and some concluding remarks are given in the last section.

2. Discretization by the finite element method

In this section, we introduce some notation and error estimates of the finite
element approximation of linear elliptic problems. The letter C (with or without
subscripts) denotes a generic positive constant which may be different at its different
occurrences throughout the paper. For convenience, the symbols ., & and ≈ will
be used in this paper. That x1 . y1, x2 & y2 and x3 ≈ y3, mean that x1 ≤ C1y1,
x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3 that are
independent of mesh sizes (see, e.g., [24]). We shall use the standard notation for
Sobolev spaces W s,p(Ω) and their associated norms and seminorms (see, e.g., [1]).
For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0},
where v|∂Ω = 0 is in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω.

For G ⊂ D ⊂ Ω, the notation G ⊂⊂ D means that dist(∂D \ ∂Ω, ∂G \ ∂Ω) > 0
(see Figure 1). It is well known that any w ∈ H1

0 (Ω0) can be naturally extended to
be a function in H1

0 (Ω) with zero outside of Ω0, where Ω0 ⊂ Ω. Thus we will show
this fact by the abused notation H1

0 (Ω0) ⊂ H1
0 (Ω).

2.1. Finite element space. Now, let us define the finite element space. First
we generate a shape-regular decomposition Th(Ω) of the computing domain Ω ⊂
R

d (d = 2, 3) into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for
d = 3). The diameter of a cell K ∈ Th(Ω) is denoted by hK . The mesh size function
is denoted by h(x) whose value is the diameter hK of the element K including x.

For generality, following [27, 29], we shall consider a class of finite element spaces
that satisfy certain assumptions. Now we describe such assumptions.

A.0. There exists γ > 1 such that

hγΩ . h(x), ∀x ∈ Ω,

where hΩ = maxx∈Ω h(x) is the largest mesh size of Th(Ω).


