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A POSTERIORI ERROR ESTIMATES OF FINITE VOLUME

ELEMENT METHOD FOR SECOND-ORDER QUASILINEAR

ELLIPTIC PROBLEMS

CHUNJIA BI AND CHENG WANG∗

Abstract. In this paper, we consider the a posteriori error estimates of the finite volume element
method for the general second-order quasilinear elliptic problems over a convex polygonal domain
in the plane, propose a residual-based error estimator and derive the global upper and local
lower bounds on the approximation error in the H1-norm. Moreover, for some special quasilinear
elliptic problems, we propose a residual-based a posteriori error estimator and derive the global
upper bound on the error in the L2-norm. Numerical experiments are also provided to verify our
theoretical results.
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1. Introduction

The finite volume element method (FVEM, also called finite volume method
or covolume method in some literature) is a class of important numerical tools for
solving differential equations, especially for those arising from physical conservation
laws including mass, momentum, and energy. Because this method possesses local
physical conservation property, which is crucial in many applications, it is popular
in computational fluid mechanics. In the past several decades, many researchers
have studied this method extensively and obtained some important results. We
refer to monograph [30] for the general presentation of this method, and to [3, 10,
11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 26, 27, 28, 29, 31, 32, 35, 36, 38, 39, 40, 41, 42]
and references therein for details.

In this paper, we study the a posteriori error estimates of the finite volume
element method for the second-order quasilinear elliptic boundary value problems

{
Lu = −∇ · F (x,∇u) + g(x, u,∇u) = 0, in Ω,

u = 0, on ∂Ω,
(1)

where Ω is a convex polygonal domain in R
2 with the boundary ∂Ω. We assume

that F (x, z) : Ω×R
2 → R

2 and g(x, y, z) : Ω×R
1×R

2 → R
1 are smooth functions

and that (1) has a solution u ∈ H1
0 (Ω) ∩W 2,r(Ω) for some r > 2. The smoothness

requirements on those functions will be given in detail later.
There are some important numerical results available for (1). We refer the reader

to [20, 33, 37] for the finite element method and to [25] for the hp-discontinuous
Galerkin methods.
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Until now, the finite volume element method for the linear elliptic problems has
been well understood. However, there are very few works related to the nonlinear
elliptic problems. To the best of our knowledge, the authors of [5, 6, 14, 29] studied
the finite volume element method and developed some a priori error estimates only
for the following quasilinear elliptic problems

−∇ · (λ(u)∇u) = f(x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω,(2)

where λ is a smooth scalar function. Recently, Bi and Ginting [8] considered the
finite volume element method for (1), proved the existence and uniqueness of the
finite volume element solutions under the assumption u ∈ W 2,r(Ω), r > 2, where r
may be close to 2, and derived the a priori error estimates in the H1-, L2-, W 1,∞-
and L∞-norms.

Compared with the relatively mature a posteriori error estimates of the finite
element method, the a posteriori error analysis of the finite volume element method
is still under development, and until now only a few results have been obtained. We
mention [12, 28] for the linear elliptic problems. However, for the nonlinear elliptic
problems, there are only [4] and [7] available. The authors of [4, 7] established
the residual-based a posteriori error estimates of the finite volume element method,
respectively, for (2) and

−∇ · (A(u)∇u) = f(x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω,(3)

where A(u) is a smooth and bounded uniformly positive definite matrix.
As a subsequent work of [8], in this paper, we study the a posteriori error esti-

mates of the finite volume element method for (1) and propose a natural and com-
putationally easy residual-based H1-norm a posteriori error estimator. Under two
assumptions that u ∈ W 2,r(Ω), r > 2, and the mesh parameter is sufficiently small,
we derive the global upper bound and local lower bounds on the error. Moreover,
for some special problems (1) which satisfy DzzF = 0 and Dzzg = 0, we propose
a residual-based L2-norm a posteriori error estimator and derive the global upper
bound on the error. We point out that the two assumptions above are reasonable,
which guarantee the existence of the finite volume element approximations of (1),
see [8] for details.

In the present work, for the sake of simplicity, we focus our attention on the
quasilinear problems on a polygonal domain, which is the same as those in [20,
33, 37]. Smooth boundaries are important for many nonlinear problems as even
theoretical results are not always available on polygonal domains. However, the
proper treatment of the curved boundary is somewhat technical (see [21] for details)
and we don’t wish to clutter our presentation.

The organization of this paper is as follows. In section 2, we introduce some
notation, formulate the finite volume element method for (1), and give some lemmas
used in the subsequent analysis. In section 3, we propose a residual-based H1-norm
a posteriori error estimator of the finite volume element method for (1) and derive
the global upper bound and local lower bounds on the error. In section 4, for
some special problems (1) which satisfy DzzF = 0 and Dzzg = 0, such as Bratu’s
equation and some nonlinear eigenvalue equations, we propose a residual-based L2-
norm a posteriori error estimator and derive the global upper bound on the error.
In section 5, we provide two numerical experiments that confirm our theoretical
findings in this paper. Finally, in Section 6, we summarize the main results of this
paper and draw some conclusions.


