
INTERNATIONAL JOURNAL OF c© 2015 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 12, Number 4, Pages 750–777

AN INTERIOR PENALTY DISCONTINUOUS GALERKIN

METHOD FOR A CLASS OF MONOTONE QUASILINEAR

ELLIPTIC PROBLEMS

PETER W. FICK

Abstract. A family of interior penalty hp-discontinuous Galerkin methods is developed and
analyzed for the numerical solution of the quasilinear elliptic equation −∇ · (A(∇u)∇u) = f

posed on the open bounded domain Ω ⊂ Rd, d ≥ 2. Subject to the assumption that the map
v 7→ A(v)v, v ∈ Rd, is Lipschitz continuous and strongly monotone, it is proved that the
proposed method is well-posed. A priori error estimates are presented of the error in the broken
H1(Ω)-norm, exhibiting precisely the same h-optimal and mildly p-suboptimal convergence rates
as obtained for the interior penalty approximation of linear elliptic problems. A priori estimates
for linear functionals of the error and the L2(Ω)-norm of the error are also established and shown
to be h-optimal for a particular member of the proposed family of methods. The analysis is
completed under fairly weak conditions on the approximation space, allowing for non-affine and
curved elements with multilevel hanging nodes. The theoretical results are verified by numerical
experiments.

Key words. hp-discontinuous Galerkin methods, interior penalty methods, second-order quasi-
linear elliptic problems.

1. Introduction

Over the past two decades, discontinuous Galerkin (DG) finite element methods
have emerged as an effective and popular choice for the numerical solution of a
wide range of partial differential equations. This is mainly stimulated by their
high degree of locality, their extreme flexibility with respect to hp-adaptive mesh
refinement, and their natural ability to accommodate high-order discretizations for
hyperbolic problems in a locally conservative manner without excessive numerical
stabilization. As it stands, there exists a vast amount of literature on the a priori
error analysis of DG methods for linear problems; we refer to the recent book of
Di Pietro & Ern [9] for a comprehensive overview of the most prominent results.
For nonlinear problems, however, there are still relatively few results available; we
mention the works of Houston et al. [18], Ortner & Süli [23], Gudi & Pani [16],
Gudi et al. [14, 15], Doleǰśı et al. [10, 11], Bustinza & Gatica [5], Bi & Lin [4], and
Congreve et al. [8]. It is fair to say that the extension of DG methods from linear
to nonlinear problems is non-obvious in many cases, particularly with respect to
the proper formulation of the element boundary terms, and that the analysis turns
out to be more challenging.

In this article, we present and analyze a family of interior penalty DG methods
for the numerical solution of the following class of quasilinear elliptic boundary value
problems. Let Ω be an open bounded domain in Rd, d ≥ 2, with Lipschitz boundary
∂Ω = ΓD ∪ ΓN, where ΓD 6= ∅ and ΓN = ∂Ω \ ΓD. Denoting by n : ΓN → Rd the
unit outward normal to ΓN, our model problem of interest is stated as follows: find
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u : Ω → R such that

−∇ · (A(x,∇u)∇u) = f in Ω,(1a)

u = gD on ΓD,(1b)

A(x,∇u)∇u · n = gN on ΓN,(1c)

where A ∈ [L∞(Ω×Rd)]d,d, f ∈ L2(Ω), gD ∈ H1/2(ΓD) and gN ∈ L2(ΓN). In what
follows, we assume that, for x ∈ Ω and v ∈ Rd, the nonlinear map v 7→ A(x,v)v is
Lipschitz continuous and strongly monotone, as phrased by the following statement.

Assumption 1.1. There exist constants CA ≥ MA > 0 such that, for all x ∈ Ω
and all v1,v2 ∈ Rd,

|A(x,v1)v1 −A(x,v2)v2| ≤ CA |v1 − v2|,(2)

(A(x,v1)v1 −A(x,v2)v2) · (v1 − v2) ≥MA |v1 − v2|2.(3)

Subject to the above assumption, one can show that problem (1) admits a unique
weak solution u ∈ H1(Ω). In passing, we note that problems of the type (1)
satisfying Assumption 1.1 arise in several applications. A classic example is mean
curvature flow, for which A(x,∇u) = (1 + |∇u|2)−1/2 I with I the d × d identity
matrix; this has applications in image processing and interface modeling in two-fluid
flows, among others. Another example is the modeling of non-Newtonian fluids. For
the sake of notational simplicity, we henceforth suppress the dependence of A(x,v)
on x and simply write A(v) instead.

The development of DG methods for problems of the type (1) has also been
pursued by several other researchers. In [5], an h-version local DG method is
developed and analyzed exhibiting optimal error estimates in the broken H1(Ω)-
norm and L2(Ω)-norm. The development and analysis of hp-version interior penalty
DG methods is initiated by Houston et al. [18]. Quasi-optimal error estimates
are presented for the error in the broken H1(Ω)-norm, which are optimal in the
mesh size h and mildly suboptimal in the polynomial degree p, by half an order
in p. Estimates for the error in the L2(Ω)-norm are not presented, but numerical
experiments reveal the convergence in the L2(Ω)-norm to be suboptimal. This
suboptimality is caused by so-called dual inconsistency of the method due to a
particular formulation of the element boundary terms. Difficulties with respect
to the proper formulation of the element boundary terms have motivated other
researchers to consider the development of incomplete interior penalty DG methods;
cf. [4, 10, 23]. In [15], a family of interior penalty DG methods is presented
and analyzed with a particular choice of the element boundary terms, for which
quasi-optimal hp-error estimates are derived in both the broken H1(Ω)-norm and
L2(Ω)-norm.

The purpose of this article is to present and analyze a new family of interior
penalty hp-DG methods for the numerical solution of (1) with quasi-optimal hp-
error estimates in both the broken H1(Ω)-norm and L2(Ω)-norm. As in [18] and
[15], our family of methods depends on the parameter θ ∈ [−1, 1]. In the linear
setting of A(·) = I with I the d× d identity matrix and for particular choices of θ,
the proposed DG formulation reduces to various well-known interior penalty meth-
ods; notable examples include the symmetric and nonsymmetric interior penalty
methods of, respectively, Arnold [1] and Rivière et al. [25]. Subject to Assump-
tion 1.1, we prove that the proposed DG formulation is well-posed provided the
discontinuity penalization parameter is chosen sufficiently large. Moreover, a priori
error estimates are presented for the error in the broken H1(Ω)-norm, displaying


