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Abstract. In this paper, we investigate a spectral method for mixed boundary value problems
defined on hexahedrons. Some results on irrational orthogonal approximation are established,
which play important roles in numerical solutions of partial differential equations defined on
hexahedrons. As examples of applications, we provide spectral schemes for two model problems,
and prove their spectral accuracy. Efficient numerical implementations are described. Numerical
results demonstrate the high efficiency of suggested algorithms.
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1. Introduction

Over the past three decades, spectral methods have been increasingly popular in
scientific computations. Especially, the Legendre and Chebyshev spectral methods
have been widely used for numerical solutions of partial differential equations, see
[1, 2, 3, 7, 8, 11, 13, 18] and the references therein. Recently, there was also some
work on the Jacobi approximation and the Jacobi spectral method for degenerated
problems, see [9, 10, 14, 15, 16]. Most of the problems considered in these papers
are defined on bounded rectangular domains. However, it is more practical to deal
with problems defined on non-rectangular domains. In particular, it is interesting to
develop the spectral method for three-dimensional and non-rectangular domains.
Recently, Guo and Jia [12] proposed a spectral method and a spectral element
method on polygonal domains. Whereas, so far, there has been little work on
spectral and spectral element methods for hexahedrons and polyhedrons.

In this paper, we investigate the spectral method for mixed boundary value
problems on hexahedrons. We first recall some recent results on the Legendre
orthogonal approximation on the cube in the next section. Then, we introduce the
irrational orthogonal approximation on arbitrary convex hexahedrons and establish
the basic results on such approximation in Section 3. These results play essential
roles in numerical solutions of partial differential equations defined on hexahedrons.
As applications of the above results, we propose the spectral method for two model
problems on hexahedrons in Section 4. Their spectral accuracy is proved. We
describe the numerical implementation of proposed schemes in Section 5, together
with some numerical results to demonstrate the high efficiency of our algorithms.
The last section is for some concluding remarks. The main idea and techniques
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developed in this work are also applicable to other mixed boundary value problems
defined on three-dimensional and non-rectangular domains.

2. Preliminaries

In this section, we recall some recent results on the Legendre orthogonal approx-
imation in three-dimensions. Let the interval Ij = { ξj | −1 < ξj < 1} and the cube
K = { ξ = (ξ1, ξ2, ξ3) | ξj ∈ Ij , 1 ≤ j ≤ 3}. We denote by Hr(K) and Hr

0 (K) the
Sobolev spaces as usual with the norm ||u||r,K . The inner product and the norm
of L2(K) are denoted by (u, v)K and ||u||K , respectively.

For any integer N > 0,PN(I1) stands for the set of all polynomials of degree at
most N , and

VN (K) = PN (I1)⊗ PN(I2)⊗ PN (I3).

The L2(K)−orthogonal projection PN,K : L2(K) → VN (K) is defined by

(u − PN,Ku, φ)K = 0, ∀φ ∈ VN (K).

For describing the approximation error precisely, we introduce the following quan-
tity with an integer r ≥ 0,

Ar,K(u) =

∫

I3

∫

I2

‖(1− ξ21)
r
2 ∂rξ1u(·, ξ2, ξ3)‖2I1dξ2dξ3

+

∫

I3

∫

I1

‖(1− ξ22)
r
2 ∂rξ2u(ξ1, ·, ξ3)‖2I2dξ1dξ3

+

∫

I2

∫

I1

‖(1− ξ23)
r
2 ∂rξ3u(ξ1, ξ2, ·)‖2I3dξ1dξ2.

Throughout this paper, we denote by c a generic constant independent of any
function and N . According to Theorem 2.1 of [19], we know that if u ∈ L2(K), and
Ar,K(u) is finite for integers r ≥ 0, r ≤ N + 1, then

(1) ‖PN,Ku− u‖2K ≤ cN−2r
Ar,K(u).

Next, let V 0
N (K) = H1

0 (K) ∩ VN (K). The H1
0 (K)−orthogonal projection P 1,0

N,K :

H1
0 (K) → V 0

N (K) is defined by

(∇(P 1,0
N,Ku− u),∇φ)K = 0, ∀φ ∈ V 0

N (K).

For any integer r ≥ 1, we define

(2) Br,K(u) = B
(1)
r,K(u) +B

(2)
r,K(u) +B

(3)
r,K(u),

where for r = 1, 2,

B
(1)
r,K(u) = B

(2)
r,K(u) = B

(3)
r,K(u) = ||u||2r,K ,

and for r ≥ 3,
(3)

B
(1)
r,K(u) =

∫ ∫ ∫

K

((1−ξ21)r−1(∂rξ1u)
2+(1−ξ22)r−1(∂rξ2u)

2+(1−ξ23)r−1(∂rξ3u)
2)dξ1dξ2dξ3,

(4)

B
(2)
r,K(u) =

∫ ∫ ∫

K

(1 − ξ21)
r−2((∂r−1

ξ1
∂ξ2u)

2 + (∂r−1
ξ1

∂ξ3u)
2)dξ1dξ2dξ3

+

∫ ∫ ∫

K

(1− ξ22)
r−2((∂ξ1∂

r−1
ξ2

u)2 + (∂r−1
ξ2

∂ξ3u)
2)dξ1dξ2dξ3

+

∫ ∫ ∫

K

(1− ξ23)
r−2((∂ξ2∂

r−1
ξ3

u)2 + (∂ξ1∂
r−1
ξ3

u)2)dξ1dξ2dξ3,


