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AN ADAPTIVE IMMERSED FINITE ELEMENT METHOD WITH

ARBITRARY LAGRANGIAN-EULERIAN SCHEME FOR

PARABOLIC EQUATIONS IN TIME VARIABLE DOMAINS

ZHIMING CHEN, ZEDONG WU, AND YUANMING XIAO

Abstract. We first propose an adaptive immersed finite element method based on the a posteriori

error estimate for solving elliptic equations with non-homogeneous boundary conditions in general
Lipschitz domains. The underlying finite element mesh need not fit the boundary of the domain.

Optimal a priori error estimate of the proposed immersed finite element method is proved. The
immersed finite element method is then used to solve parabolic problems in time variable domains

together with an arbitrary Lagrangian-Eulerian (ALE) time discretization scheme. An a posteriori

error estimate for the fully discrete immersed finite element method is derived which can be used
to adaptively update the time step sizes and finite element meshes at each time step. Numerical

experiments are reported to support the theoretical results.
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1. Introduction

Partial differential equations in time variable domains have tremendous interests
in scientific and engineering applications including, for example, fluid-structure
interaction [4, 18, 16] or melting process [5]. We consider in this paper the following
parabolic equations in a time variable domain

∂u

∂t
−∆u = f in Ω(t), a.e. t ∈ (0, T ),(1)

u = 0 on Γ(t), a.e. t ∈ (0, T ),(2)

u = u0 in Ω(0),(3)

where T > 0 is the length of the time interval, Ω(t) ⊂ R2 is a bounded domain at
time t with Lipschitz boundary Γ(t). We remark that the results in this paper can
be easily extended to deal with problems with non-homogeneous Dirichlet bound-
ary condition and other types of boundary conditions such as Neumann or Robin
conditions.

Let Ft : Ω̂ → Ω(t) be the bijective map which for any t ∈ (0, T ), maps the

reference domain Ω̂ to Ω(t). The problem (1)-(3) will be discretized in time by the
following arbitrary Lagrangian-Eulerian (ALE) scheme [16, 17] (see also section 3
below):

Un − Ūn−1

τn
− vn · ∇Un −∆Un = fn in Ωn = Ω(tn),(4)

where Ūn−1 and vn are defined by

Ūn−1 = Un−1(Ftn−1(F−1
tn (x))), vn = (∂tFt)|t=tn(F−1

tn (x)), ∀x ∈ Ωn.
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One approach is to solve (4) by the finite element method using the mesh which is

the map of a fixed finite element mesh in the reference domain Ω̂. This approach has
the difficulty of possible mesh distortions which may lead to undesirable remeshing
procedures in practical applications. We also remark that the ALE scheme is closely
related to the variable mesh method in [20] whose convergence is also studied in
[26].

In this paper we propose to solve (4) by using the immersed finite element method
in which the finite element meshes need not fit the boundary of the domain. This
allows one to combine the technique of adaptive finite element method based on a
posteriori error estimates to obtain a fully adaptive algorithm for solving (1)-(3)
with error control which achieves quasi-optimal error reduction as solving parabolic
equations on time invariant domains (cf. [6]). We remark that immersed finite
element or finite difference methods have been extensively studied in the literature.
In the finite difference setting, we refer to the immersed boundary method in [28],
the immersed interface method in [22, 24], the ghost fluid method in [27], and
the references therein. In the finite element framework, we refer to the work of
[25, 10] for elliptic problems with discontinuous coefficients in which finite element
basis functions are locally modified for elements intersection the interface where
the coefficient jumps. In [8] the adaptive immersed interface finite element method
based on a posteriori error estimates is proposed for elliptic and Maxwell equations
with discontinuous coefficients.

In this paper we first develop an adaptive immersed finite element method
based on the a posteriori error estimate for solving elliptic equations with non-
homogeneous boundary condition in general Lipschitz domains. We remark that
the a posteriori error estimation and adaptive finite element methods for elliptic
problems are extensively studied in the literature for polygonal domains with the
exception of [12] in which boundary fitted finite element meshes are used. The
boundary fitted finite element mesh has the difficulty in refining boundary ele-
ments which may destroy the mesh shape regular property if mesh regularization
techniques are not used. In this paper we extend the construction of immersed
interface finite element in [8] and propose an immersed finite element method to
solve elliptic problems on domains with piecewise smooth boundary. Our construc-
tion is equivalent to solving the problem on a boundary fitted finite element mesh
that satisfies the maximum angle condition. Thus optimal a priori error estimates
are guaranteed if the solution are smooth in H2(Ω). We also derive a reliable and
efficient a posteriori error estimate by introducing a Clément type interpolation
operator and using a result of [15] to localize the approximation error of the non-
homogeneous boundary condition in H1/2 norm. We also refer to the work of [30]
and the references therein for the study of a posteriori error estimation for elliptic
problems with non-homogeneous boundary conditions in polygonal or polyhedral
domains.

We next apply the immersed finite element method for the elliptic problem de-
veloped in the first part of this paper to solve the ALE scheme (12) and obtain a
fully discrete immersed finite element method for (1)-(3). We derive an a posteriori
error estimate of residual type which can be used to adapt the meshes and time step
sizes in practical computations. The derived a posteriori error estimate reduces to
the standard a posteriori error estimates for parabolic equations in e.g. [29, 7] if
the domains are not variable in time. The new difficulty of estimating the parabolic
extension of the discrete boundary data on the variable time domain is overcome
by using a deep theorem of Verchota in harmonic analysis on the solvability of


