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CONVERGENCE OF A CELL-CENTERED FINITE VOLUME

METHOD AND APPLICATION TO ELLIPTIC EQUATIONS

GUNG-MIN GIE AND ROGER TEMAM

Abstract. We study the consistency and convergence of the cell-centered Finite Volume (FV)
external approximation of H1

0 (Ω), where a 2D polygonal domain Ω is discretized by a mesh of
convex quadrilaterals. The discrete FV derivatives are defined by using the so-called Taylor Series
Expansion Scheme (TSES). By introducing the Finite Difference (FD) space associated with the
FV space, and comparing the FV and FD spaces, we prove the convergence of the FV external
approximation by using the consistency and convergence of the FD method. As an application,
we construct the discrete FV approximation of some typical elliptic equations, and show the
convergence of the discrete FV approximations to the exact solutions.
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1. Introduction

In engineering, fluid dynamics, and physics more recently, the Finite Volume
(FV) discretization method is widely used because of its local conservation property
of the flux on each control volume. From the numerical analysis point of view, many
different types of FV methods, depending on the way of computing the discrete
fluxes, have been introduced and analyzed up to this day. Concerning the varieties
of the FV methods and their applications, we refer the readers to, e.g., [52, 32, 51,
18, 24] for general references, and to [36, 1, 37, 47, 58, 60, 48, 38, 40, 49, 11] for the
computational applications.

In proving the convergence of the cell-centered FV method, one specific difficulty
is due to the weak consistency of the FV method. Namely, the companion discrete
FV derivative arising in the discrete integration by parts does not usually converge
strongly to the corresponding derivative of the limit function. To overcome this
technical difficulty, in an important earlier work, the authors of [32] employed a
discrete compactness argument for the FV space, even for linear problems. Since
then, using this approach, further analysis of the cell-centered FV method has been
made in, e.g, [28, 27, 12, 31, 41, 8, 14]. A different approach was introduced in
our earlier works [39, 42] to prove the convergence of the cell-centered FV method.
More precisely, we introduced there the Finite Difference (FD) space which is as-
sociated with the FV space, and compared the FV and FD spaces by defining a
map between them. Then, thanks to the consistency and convergence of the FD
method which are proven in a classical way, the convergence of the FV method
is inferred. This approach was conducted in [39, 42] for the study of the cell-
centered FV method when the domain considered has a rectangular mesh, whereas
more general meshes are desirable for FV which are specifically aimed at handling
complicated geometries. For a different type of FV methods other than the cell-
centered FV, the convergence of, e.g., the cell-vertex FV method is well-studied in,
e.g., [54, 55, 56, 10, 53, 59].
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There is a broad class of FV methods which correspond to various equations
and applications, and to various strategies of approximation. After choosing, for
a given mesh, the nodal points and the reconstructed functions, one needs to de-
fine an approximation of the derivatives (which is not easy on a general mesh).
For elliptic problems which admit a weak (variational) formulation, the gradient
schemes (studied in, e.g., [34, 26]) consist in mimicking the variational formulation
by replacing the exact derivatives by the approximate derivatives. Another more
general direction applying to all classes of equations and conservation laws, con-
sists in integrating the conservation law on the control volume and then looking for
approximations of the fluxes. Our approach relates to the gradient schemes. Us-
ing cell-centered unknowns, we approach the spatial derivatives using the so-called
Taylor Series Expansion Scheme (TSES) method that was introduced in the early
90’s in the engineering literature, see, e.g., [46, 52, 45, 18]. Note that the TSES is
commonly considered in the engineering fluid mechanics, whereas the MPFA ap-
proach, [9, 3], not studied here is considered in the petroleum and hydrogeology
literatures. We can then define approximate variational problems and study the
convergence of the approximate solutions to those of the exact ones. The construc-
tion of the TSES method is closely related to, e.g., that of the so-called diamond
scheme in [22] or the Discrete Duality Finite Volume scheme in [44, 23] according
to this terminology which was subsequently introduced; see Remark 3.2 below. See
other related works as well in, e.g., [43, 30, 16, 2].

As we said, there is a substantial body of work related to the numerical analysis
of the FV methods; see, e.g., the review articles [32], and more recently [34, 26];
see also, e.g., [31, 41] and the references quoted in these articles. Despite their
importance and major interest, the existing works deal with objectives different
than ours and do not cover our objectives. These works are generally motivated
by reservoir (underground) flows and address the corresponding equations, and,
on the mathematical side, they use compactness arguments to prove convergence,
even for linear equations. Due to the growing importance of FV methods, and
the considerable difficulties for proving their convergence, it is clear that there will
be many more works in years to come on the numerical analysis of FV methods,
and there is need to diversify the available tools. This article, like earlier works
[39, 42], is generally motivated by classical or geophysical fluid mechanics; it uses
a form of the FV method, the TSES method, which is not dealt with in the review
articles previously mentioned; and it uses the comparison with a related Finite
Difference method instead of compactness arguments. Another major difference
between prior works and this article is that, in, e.g., [32, 34, 26], the FV method
and its analysis is taylored to one specific equation in divergence form and, as far
as we understand, the work needs to be redone or suitably adapted if we consider a
different equation with, e.g., lower order terms as in equation (124) in this article.
On the contrary, our approach consists in approximating the underlying function
space of typeH1(Ω), leaving all flexibility for the equations whose coefficients can be
nonhomogeneous and nonisotropic. Finally it is noteworthy that [24] emphasizes the
use of the maximum principle which is mostly not relevant to classical or geophysical
fluid mechanics (nor to multi-species underground reservoir flows which produce
systems).

In this article, to prove the consistency and convergence of the TSES Finite
Volume approximation of H1

0 (Ω), (which is equivalent to verifying the properties
(C1) and (C2) below), we impose some conditions (H1)-(H5) on the mesh. (H1)-
(H3) are standard hypotheses which guarantee that the mesh is not too distorted.


