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A FINITE ELEMENT DUAL SINGULAR FUNCTION METHOD

TO SOLVE THE STOKES EQUATIONS INCLUDING CORNER

SINGULARITIES

JAE-HONG PYO

(Communicated by Dongwoo Sheen)

Abstract. The finite element dual singular function method [FE-DSFM] has been constructed
and analyzed accuracy by Z. Cai and S. Kim to solve the Laplace equation on a polygonal domain
with one reentrant corner. In this paper, we impose FE-DSFM to solve the Stokes equations
via the mixed finite element method. To do this, we compute the singular and the dual singular
functions analytically at a non-convex corner. We prove well-posedness by using the contraction
mapping theorem and then estimate errors of the algorithm. We obtain optimal accuracy O(h) for

velocity in H1(Ω) and pressure in L2(Ω), but we are able to prove only O(h1+λ) error bounds for
velocity in L2(Ω) and stress intensity factor, where λ is the eigenvalue (solution of (4)). However,
we get optimal accuracy results in numerical experiments.
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1. Introduction

Solutions of elliptic boundary value problems on a domain with corners have
singular behaviors near the corners. This occurs even when the given data of the
governed equations is very smooth. Such singular behavior affects the accuracy of
the finite element method throughout the whole domain. In order to overcome the
singularity problem, the finite element dual singular function method [FE-DSFM]
has been constructed in [3] to solve the Laplace equation and performed numerical
tests in [4]. And then it is extended to solve the Helmholtz equation in [9] and the
interface problem in [8]. The goal of this paper is to reconstruct FE-DSFM to solve
Stokes equations:

(1)

−µ△u+∇p = f , in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω,

with f is a given function in H−1(Ω), Ω is a computational domain, and µ = Re−1

is the reciprocal of the Reynolds number. Here the unknowns are the (vector)
velocity field u ∈ H1

0(Ω) and the (scalar) pressure p ∈ L2
0(Ω).

If the solution of (1) is smooth enough, namely (u, p) ∈ Hs+1(Ω)×Hs(Ω) with
s ≥ 1, and if a suitable finite element pair is imposed for velocity and pressure, then
the finite element solution (uh, ph) using the standard mixed method has optimal
error bounds as shown in [1, 6]:

(2) ‖u− uh‖0 + h‖u− uh‖1 + h‖p− ph‖0 ≤ Chs+1
(

‖u‖s+1 + ‖p‖s
)
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where h is the biggest mesh size. However, if s < 1, then the error bounds of the
method become only

(3) ‖u− uh‖0 + hs‖u− uh‖1 + hs‖p− ph‖0 ≤ Ch2s
(

‖u‖s+1 + ‖p‖s
)

.

So we call (u, p) a singular solution for the case s < 1, otherwise a regular solution.
Because the singularity is due to reentrant corners of computational domain Ω, we
assume that Ω is an open and bounded polygonal domain in R

2 with one reen-
trant corner. Extension to the domain with a finite number of reentrant corners is
straightforward.

Let ω be the internal angle. Without the loss of generality, we assume that the
corresponding vertex is at the origin and that the internal angle ω is spanned by
the two half-lines θ = 0 and θ = ω. We denote Γin for 2 edges on the boundary
including the reentrant corner and Γout for other parts of the boundary. Even
though the singular functions are already computed in [10], we will derive those
again in §6 to get more advanced properties of the singular functions and newly
find out the dual singular functions in (8) below.

The singular function (us, ps), where us = (us, vs), can be summarized with the
eigenvalue λ(> 0) which is the solution of

(4) sin2(λω) = λ2 sin2(ω),

by

(5)





ud
vd
pd



 = d1

















−r−λ λ

µ
sin(θ) sin((1 + λ)θ)

−r−λ 1

µ
(sin(λθ) − λ sin(θ) cos((1 + λ)θ))

2r−λ−1λ cos((1 + λ)θ)

















+ d2

















r−λ 1

µ
(sin(λθ) + λ sin(θ) cos((1 + λ)θ))

r−λ λ

µ
sin(θ) sin((1 + λ)θ)

2r−λ−1λ sin((1 + λ)θ)

















,

where

C1 = sin(λω) + λ sin(ω) cos((1 − λ)ω) and C2 = λ sin(ω) sin((1− λ)ω).

We note that the singular function (us, ps) is the solution of homogeneous Stokes
equations with vanishing Dirichlet boundary condition at Γin. And λ has to be a
positive real number and (us, ps) ∈ H1+λ(Ω)×Hλ(Ω). As the conclusion in Lemma
6.1 below, λ = 1 for any ω ≤ π, so (us, ps) ∈ H2(Ω)×H1(Ω) is a regular solution
and it becomes a singular solution for the case λ < 1, namely ω > π. Moreover
(4) has a unique non-trivial solution λ ∈ R for the case π < ω ≤ βπ. where
β :≈ 1.430296653124203. And (4) has 2 non-trivial real solutions 0.5 < λ1 < λ2 < 1
for the case ω ∈ (βπ, 2π). In addition, λ = 0.5 is the unique non-trivial solution for
ω = 2π.

Let η be a smooth cut-off function which is equal one identically in neighborhood
of origin, and the support of η is small enough so that the functions ηus vanishes
identically on ∂Ω. Then, in general, the solution (u, p) including singular parts of


