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THE CLIQUE AND COCLIQUE NUMBERS’ BOUNDS BASED

ON THE H-EIGENVALUES OF UNIFORM HYPERGRAPHS

JINSHAN XIE AND LIQUN QI

Abstract. In this paper, some inequality relations between the Laplacian/signless Laplacian
H-eigenvalues and the clique/coclique numbers of uniform hypergraphs are presented. For a con-
nected uniform hypergraph, some tight lower bounds on the largest Laplacian H+-eigenvalue and

signless Laplacian H-eigenvalue related to the clique/coclique numbers are given. And some up-
per and lower bounds on the clique/coclique numbers related to the largest Laplacian/signless
Laplacian H-eigenvalues are obtained. Also some bounds on the sum of the largest/smallest adja-
cency/Laplacian/signless Laplacian H-eigenvalues of a hypergraph and its complement hypergraph
are showed. All these bounds are consistent with what we have known when k is equal to 2.

Key words. H-eigenvalue, clique, coclique, hypergraph, tensor, signless Laplacian, Laplacian,
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1. Introduction

In the current combinatorics and graph theory associative literatures, a
growing number of them studied hypergraphs and their applications in various
fields [1,3,7] because hypergraphs can be the better mathematical models in many
practical cases and higher order structures than graphs. On the other hand, ten-
sor is well known as an important tool in applied mathematics and virtually every
discipline in the engineering and physical sciences that makes some use of it. So it
is a natural thought to study properties of hypergraphs by using the tool of ten-
sor. In 2005, the definition of eigenvalue of a tensor was independently proposed
by Lim [16] and Qi [23]. At the same time, several kinds of eigenvalues for ten-
sors had been proposed, such as H-eigenvalues, Z-eigenvalues, E-eigenvalues and
N-eigenvalues. In 2007, by Lim [17] the study of hypergraph via its adjacency ten-
sor and its eigenvalues was initiated. Then in 2009, Rota Bulò and Pelillo [26–28]
gave new bounds on the clique number of a uniform hypergraph based on analy-
sis of the largest eigenvalue of the adjacency tensor. As we know, the problem to
find the clique number of a 2-uniform hypergraph(i.e. graph) is the NP-complete
problem [8], and turns out to be even intractable to a k-uniform hypergraph for
k ≥ 3. However, we have a good algorithm for calculating the largest H-eigenvalues
of an irreducible nonnegative tensor [20]. Therefore, it is significant to us depict
the bounds on the clique number related to the largest H-eigenvalues for k-uniform
hypergraphs.

In this paper, we study some relations between the Laplacian/signless Laplacian
H-eigenvalues and the clique/coclique numbers of uniform hypergraphs. The Lapla-
cian/signless Laplacian H-eigenvalues of a uniform hypergraph refer to respectively
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the H-eigenvalues of the Laplacian/signless Laplacian tensors of this uniform hy-
pergraph. This work is motivated by the classic results for graphs [2,9,18,19,21,29],
the results of Rota Bulò and Pelillo [28] and the latest results of Yi and Chang [34].
Recently, several papers appeared on nonnegative tensors and spectral hypergraph
theory via tensors [4, 6, 10–17, 22–28, 30–34]. Among them, Cooper et al [6] and
Qi [24] respectively systematically studied the adjacency tensors, Laplacian and
signless Laplacian tensors of uniform hypergraphs. These three notions of tensors
are more natural and simpler than those in the literature, so we follow these three
notions of tensors throughout the sequel discussion.

The rest of this paper is organized as follows. In the next section, we restate-
ment some definitions on eigenvalues of tensors and uniform hypergraphs. Also we
give the definitions and some known results on clique and coclique numbers of a
uniform hypergraph. We discuss in Section 3 some inequality relations between
the Laplacian/signless Laplacian H-eigenvalues and the clique number of a uni-
form hypergraph. In Section 4, we present some inequality relations between the
Laplacian/ signless Laplacian H-eigenvalues and the coclique number of a uniform
hypergraph. Also we give some bounds on the sum of the largest/smallest adja-
cency/Laplacian/signless Laplacian H-eigenvalues of a hypergraph and its comple-
ment hypergraph.

2. Preliminaries

Some definitions of eigenvalues of tensors and uniform hypergraphs are pre-
sented in this section.

2.1. H-Eigenvalues of tensors. In this subsection, some basic definitions on
H-eigenvalues of tensors are reviewed. For comprehensive references, see [10, 23]
and references therein. Especially, for spectral hypergraph theory oriented facts on
H-eigenvalues of tensors, please see [12, 24].

Let R be the field of real numbers and R
n the n-dimensional real space. R

n
+

denotes the nonnegative orthant of Rn. R
n
++ denotes the positive orthant of Rn.

For integers k ≥ 3 and n ≥ 2, a real tensor T = (ti1...ik) of order k and dimension
n refers to a multiway array (also called hypermatrix) with entries ti1...ik such that
ti1...ik ∈ R for all ij ∈ [n] := {1, . . . , n} and j ∈ [k]. Tensors are always referred
to k-th order real tensors in this paper, and the dimensions will be clear from the
content. Given a vector x ∈ R

n, T xk is defined as
∑

i1,i2,...,ik∈[n]

ti1i2...ikxi1xi2 · · ·xik

and T xk−1 is defined as an n-dimensional vector such that its i-th element being
∑

i2,...,ik∈[n]

tii2...ikxi2 · · ·xik for all i ∈ [n]. Let I be the identity tensor of appropriate

dimension, e.g., ii1...ik = 1 if and only if i1 = · · · = ik ∈ [n], and zero otherwise
when the dimension is n. The following definition was introduced by Qi [23].

Definition 2.1. Let T be a k-th order n-dimensional real tensor. For some λ ∈ R,
if eigenvalue equation (λI − T )xk−1 = 0 has a solution x ∈ R

n \ {0}, then λ is

called an H-eigenvalue and x an H-eigenvector associated to λ = T x
k

||x||k
k

. Further-

more, if x ∈ R
n
+ \ {0}, then we say that λ is an H+-eigenvalue of T .

It is seen that H-eigenvalues are real numbers [23]. By [10, 23], we have that
the number of H-eigenvalues of a real tensor is finite. By [24], we have that all
the tensors considered in this paper have at least one H-eigenvalue. Hence, we
can denote by λ(T ) (respectively µ(T )) as the largest (respectively smallest) H-
eigenvalue of a real tensor T .


