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A TWO-GRID FINITE VOLUME ELEMENT METHOD FOR A

NONLINEAR PARABOLIC PROBLEM

CHUANJUN CHEN∗ AND WEI LIU

Abstract. A two-grid algorithm is presented and discussed for a finite volume element method
to a nonlinear parabolic equation in a convex polygonal domain. The two-grid algorithm consists
of solving a small nonlinear system on a coarse-grid space with grid size H and then solving a
resulting linear system on a fine-grid space with grid size h. Error estimates are derived with the
H1-norm O(h + H2) which shows that the two-grid algorithm achieves asymptotically optimal
approximation as long as the mesh sizes satisfy h = O(H2). Numerical examples are presented to
validate the usefulness and efficiency of the method.
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1. Introduction

Let Ω ⊂ R
2 be a bounded convex polygonal domain with boundary ∂Ω, and

consider the initial-boundary value problem






ut −∇ · (A(u)∇u) = f(x, t), x ∈ Ω, 0 < t ≤ T,
u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,
u(x, 0) = u0(x), x ∈ Ω,

(1)

where ut denotes ∂u
∂t
, x = (x1, x2), f(x, t) is a given real-valued function on Ω.

We assume that the coefficient A(u) is sufficiently smooth such that there exist
constants Ci (i = 1, 2, 3) satisfying

0 < C1 ≤ A(u) ≤ C2, |A(u)t| ≤ C3, ∀u ∈ C(Ω× [0, T ]),(2)

and the Lipschitz continuous condition, ∀u, v ∈ C(Ω× [0, T ]),

|A(u)−A(v)| ≤ L|u− v|, |A(u)t −A(v)t| ≤ L|u− v|,(3)

with L a positive constant and A(u)t =
∂
∂t
A(u).

It is also assumed that the functions f, u0 have enough regularity and they satisfy
appropriate compatibility conditions so that the initial-boundary value problem
(1) has a unique solution satisfying the regularity results as demanded by our
subsequent analysis [1].

We shall study a two-grid algorithm of a nonlinear parabolic equation by using
finite volume element method (FVEM). The FVEM is a class of important numer-
ical methods for solving differential equations. It has been widely used in many
engineering fields, such as computational fluid mechanics, groundwater hydrology,
heat and mass transfer and petroleum engineering, reservoir simulations. Perhaps
the most important and attractive property of the FVEM is that it possesses local
conservation laws (mass, momentum and energy) which is crucial in many applica-
tions. Many researchers have studied this method for linear and nonlinear problems.
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We can refer to [2-11] for general presentation of this method and references therein
for details.

On the other hand, two-grid method is a discretization technique for nonlinear
equations based on two grids of different sizes. The main idea is to use a coarse-grid
space to produce a rough approximation of the solution of nonlinear problems, and
then use it as the initial guess on the fine grid. This method involves a nonlinear
solve on the coarse grid with grid size H and a linear solve on the fine grid with
grid size h < H , respectively. Two-grid method was firstly introduced by Xu
[12, 13] for linear (nonsymmetric or indefinite) and especially nonlinear elliptic
partial differential equations. Later on, two-grid method was further investigated
by many authors. We can refer to [14] for finite difference method and to [15, 16, 17,
18, 19, 20, 21] for finite element and mixed finite element method. For finite volume
element method, there are also many literatures [22, 23, 24, 25, 26, 27, 28]. For the
nonlinear parabolic problem (1), Dawson and Wheeler [14, 15] have constructed the
two-grid method by using finite difference method and mixed finite element method.
Chen and Liu [21] have studied the two-grid piecewise linear finite element method.
Recently, In [24, 25] the two-grid finite volume element method was studied for the
semilinear parabolic problem with a nonlinear reaction term, but with a linear
diffusion term. Zhang et al. [27, 28] have considered the two-grid finite volume
element method for circumcenter based control volumes, with suboptimal estimates
in L2 and H1 norms for a nonlinear parabolic equation.

However, as far as we know, there is no convergence analysis of the two-grid
FVEM based on barycenter control volumes for the nonlinear parabolic problem
(1). In this paper, we consider the two-grid FVEM for barycenter based control
volumes for the nonlinear parabolic problem (1). The two-grid FVEM is based on
two conforming piecewise linear finite element spaces SH and Sh. Where SH is the
coarse grid with grid size H and Sh is the fine grid with grid size h respectively.
With the proposed techniques, solving the nonlinear system on the fine-grid space is
reduced to solving a linear system on the fine-grid space and a nonlinear system on
a much smaller space. The work for solving the nonlinear system on the coarse-grid
space is relatively negligible since dimSH≪dimSh. This means that solving such a
nonlinear problem is not much more difficult than solving one linear problem. A
remarkable fact about this simple approach is, as shown in [12], that the coarse
grid can be quite coarse and still maintain a good accuracy approximation. The
main results in this paper are the error estimates for the considered single-grid
and two-grid methods in the Sobolev H1 norm. To get the estimates, we used
standard results from the finite volume element convergence analysis which is based
upon viewing the finite volume element method as a perturbation of finite element
method.

The rest of this paper is organized as follows. In Section 2 we describe the finite
volume element scheme for the nonlinear parabolic problem (1). Section 3 contains
the error estimates for the semidiscrete finite volume element method. In Section
4 we construct the two-grid finite volume element algorithm and prove its optimal
error estimates in the H1 norm. Finally in Section 5 we give the numerical examples
to validate the theoretical results.

2. Finite volume element method

We will use the standard notation for Sobolev spaces W s,p(Ω) [29] with 1 ≤ p ≤
∞ consisting of functions that have generalized derivatives of order s in the space


