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FINITE VOLUME APPROXIMATION OF THE LINEARIZED

SHALLOW WATER EQUATIONS IN HYPERBOLIC MODE

ARTHUR BOUSQUET AND AIMIN HUANG

Abstract. In this article, we consider the linearized inviscid shallow water equations in space
dimension two in a rectangular domain. We implement a finite volume discretization and prove the
numerical stability and convergence of the scheme for three cases that depend on the background

flow ũ0, ṽ0, and φ̃0 (sub- or super-critical flow at each part of the boundary). The three cases
that we consider are fully hyperbolic modes.
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1. Introduction

This article aims to study the finite volume approximation of the initial and
boundary value problem for the linearized shallow water (SW) equations in a rec-
tangle. This article builds on two previous articles [15] and [9]. In the theoretical
paper [15] the authors determine all the boundary conditions that one can associate
to the linearized shallow water equations and find, as explained below, five differ-
ent situations depending on the respective values of ũ0, ṽ0, φ̃0 corresponding to the
(constant) background flow around which the linearization is made. Omitting the
non generic cases where one of these constants vanish, we can assume, by a change
of variables that ũ0, ṽ0, φ̃0 are > 0. The article [15] raises of course the question
of the approximation of the SW equations in the rectangle in these different sit-
uations. This question was investigated in [9] which considers the approximation
of the inviscid linearized shallow water equations in the so-called supercritical (su-

personic) case, that is when ũ2
0 + ṽ20 > gφ̃0 (see below). Four cases remain to be

studied and we consider in this article three of them for which the stationary part
of the SW equations are fully hyperbolic. We do not discuss in this article the
approximation of the fifth case for which the stationary part of the SW equations is
partly hyperbolic and partly elliptic as this case necessitates a different approach.

Theoretically, we extended the results in [15] to more general hyperbolic systems
in [16] and possibly to more general polygonal-like domains in the fully hyperbolic
case (see [16, Remark 2.3]). Hence, we could also study the finite volume approxi-
mation in the more general setting. However, in this article, we prefer to consider
the shallow water equations in a rectangular domain to stay close from our initial
motivation of this work that is the study of the Local Area Models (LAMs) in the
atmosphere and oceans sciences, see e.g. [22].

The linearized shallow water equations that we consider read

(1.1)











ut + ũ0ux + ṽ0uy + gφx = fu,

vt + ũ0vx + ṽ0vy + gφy = fv,

φt + ũ0φx + ṽ0φy + φ̃0(ux + vy) = fφ,
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where (x, y) ∈ M := (0, Lx) × (0, Ly), (u, v) are the horizontal components of the
velocity and φ is the potential height. The advection velocities ũ0, ṽ0 and the mean
geopotential height φ̃0 are constants, g is the gravitational acceleration, fu, fv, and
fφ are the source terms. As shown in [15], the boundary conditions which can
be associated with these equations depend on the relative values of the velocities
(ũ2

0, ṽ
2
0 > or < gφ̃0), that is whether these velocities are sub- or supercritical (sub- or

supersonic). The three supersonic cases, when ũ2
0 + ṽ20 − gφ̃0 > 0, that we consider

are called: the mixed hyperbolic case (two sub-cases) and the fully hyperbolic

subcritical case. The supercritical case, when ũ0 >

√

gφ̃0, ṽ0 >

√

gφ̃0, has been

considered in [9]. In this article we will focus on the other three cases. For the
mixed hyperbolic case, we only consider one sub-case, where

(1.2) ũ0, ṽ0, φ̃0 > 0, ũ0 <

√

gφ̃0, ṽ0 >

√

gφ̃0,

since the other sub-case where

ũ0, ṽ0, φ̃0 > 0, ũ0 >

√

gφ̃0, ṽ0 <

√

gφ̃0,

would be similar. In the fully hyperbolic subcritical case, we assume that

(1.3) ũ0, ṽ0, φ̃0 > 0, ũ0 <

√

gφ̃0, ṽ0 <

√

gφ̃0, ũ2
0 + ṽ20 − gφ̃0 > 0.

We will study the cases (1.2) and (1.3) separately in Section 2 and 3.
As we know, the literature on the shallow water equations is very vast, both on

the theoretical and computational aspects, considering the viscous equations or the
partly or totally inviscid equations and considering that the height is either always
strictly positive or that it can vanish. See e.g. [1,2,4,8,12,21] on the computational
side and see e.g. [5, 6, 10, 11, 14, 17–20] on the theoretical side. Regarding the nu-
merical stability of time discretized finite volume schemes, see e.g. [8], [9], and [12].
The proof of the convergence results follows the same methods as e.g. [3] and [13].

This article is organized as follows. At the end of this introductory section, we
present some notations which we will use throughout this article. Section 2 and
3 are devoted to show the stability and convergence results of the finite volume
scheme for the linearized SW equations in the mixed hyperbolic case and in the
fully hyperbolic subcritical case, respectively.

We now write (1.1) in the compact form

(1.4) ut + E1ux + E2uy = f ,

where u = (u, v, φ)T , f = (fu, fv, fφ)
T and

E1 =





ũ0 0 g
0 ũ0 0

φ̃0 0 ũ0



 , E2 =





ṽ0 0 0
0 ṽ0 g

0 φ̃0 ṽ0



 .

Note that E1, E2 admit a symmetrizer S0 = diag(1, 1, g/φ̃0), which means that
S0E1, S0E2 are both symmetric (see e.g. [7, Chapter 1]).

Here and in the following, we endow the space H = L2(M)3 with the Hilbert
scalar products and norms, for u = (u, v, φ)T , u′ = (u′, v′, φ′)T :

〈u,u′〉 = (S0u,u
′) = (u, u′) + (v, v′) +

g

φ̃0

(φ, φ′), |u| = {〈u,u〉}1/2,

(u,u′) = u′Tu = (u, u′) + (v, v′) + (φ, φ′), ‖u‖ = {(u,u)}1/2.

(1.5)


