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FINITE VOLUME MULTILEVEL APPROXIMATION OF THE

SHALLOW WATER EQUATIONS WITH A TIME EXPLICIT

SCHEME

ARTHUR BOUSQUET, MARTINE MARION, AND ROGER TEMAM

Abstract. We consider a simple advection equation in space dimension one and the linearized
shallow water equations in space dimension two and describe and implement two different mul-
tilevel finite volume discretizations in the context of the utilization of the incremental methods
with time explicit or semi-explicit schemes.
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1. Introduction

This article is related to the article [5] in which we investigated multilevel finite
volume discretizations for the one dimensional advection equation and for the one
and two-dimensional linear shallow water equations. This article is also related to
the article [2] in which we presented and implemented a hierarchical multilevel finite
volume discretization for the shallow water equations combined with a Runge-Kutta
discretization of order four in time. The article [5] focused on the Euler implicit
time discretization, this article continues with the stability analysis of the multilevel
finite volume methods but with a partly or fully Euler explicit discretization in time.

We consider the simple one-dimensional advection equation and the full two-
dimensional shallow water equations without viscosity, linearized around a constant
flow. For the shallow water equations the boundary conditions and the analysis
depend on the nature of the background flow; see [13] and below. In this article we
choose the supercritical case which allows us to use a classical upwind finite volume
scheme, see e.g. [14].

Our motivations are two-fold. On the physical side the shallow water equations
are a simplified model of the Primitive Equations (PEs) of the atmosphere and
the oceans. As shown in [21], [18], in a rectangular geometry, the PEs can be ex-
panded using a certain vertical modal decomposition; with such a decomposition
we obtain an infinite system of coupled equations which resemble the shallow water
equations. See e.g. [8], [9] for the actual numerical resolution of these coupled
systems. However it appears in these articles that the problems to be solved are
very difficult (demanding) and performant numerical methods are needed to tackle
more and more realistic problems. We turned in [2] to multilevel finite volume
methods which are here our second motivation. Finite volume methods are desir-
able for the treatment of complicated geometrical domains such as the oceans, and
multilevel methods of the incremental unknown type are useful for the implemen-
tation of multilevel methods. Such methods have been introduced in the context
of the Nonlinear Galerkin Method in [15] (see also [16]), in the context of finite
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differences in [20], and in the context of spectral methods and turbulence in [11].
In continuation of [2], this article explores the finite volume implementation of the
incremental unknowns.

Considering, for simplicity, a rectangular geometry, we divide our domain in
“small“ cells of size ∆x for the one dimensional case and of size ∆x ×∆y for the
two dimensional case which we combine at the first level of increment, in coarse
cells of size 3∆x and 3∆x× 3∆y respectively. The unknowns on the small cells are
the original unknowns denoted by u or u, and we also introduce, for the coarse cells,
suitable averaged values of the unknowns denoted by U orU. We also introduce the
incremental unknowns, denoted by Z or Z, which are frozen during the computation
on the coarse mesh and which allow us to go from the unknowns on the coarse mesh
to the unknowns on the fine mesh.

We apply different time steps on the fine mesh and on the coarse mesh. Since
the cells are smaller on the fine mesh we use a smaller time step, ∆t/p, where p is
chosen, and we use a time step ∆t for our computation on the coarse mesh. This
coarsening can be repeated once more considering cells of size 9∆x or 9∆x× 9∆y,
and possibly several times as the programming is repetitive and its cost is thus
small; however as done in [5] we restrict ourselves in this article to one coarsening.

The stability analysis developed here is done on a multilevel method that is
different than that presented in [2] and closer to that presented in [5] (see however
below and in Section 5). At the end of this article we numerically compare the
method presented in this article with the averaged multilevel method used in [2]
and [5].

Of course there is a very rich literature on the discretization of the shallow water
equations using multilevel and/or parallel methods; see e.g. [1], [3], [10], [12], [17],
[22], and the references therein.

This article is organized as follows. In Section 2 we present the hierarchical
multilevel discretization for the one dimensional advection equation. For the time
discretization we use the Euler explicit or semi-explicit method. Then in Section
3 we investigate a hierarchical multilevel discretization for the two dimensional
linear shallow water equations. In Section 4 we re-introduce the Averaged Mul-
tilevel Finite Volume method presented in [2] and [5] for the advection equation.
We discuss several questions related to the stability of the method that we also
investigate numerically. Finally, we present some numerical results on the two di-
mensional linear shallow water equations comparing computations done solely on
the fine grid, computations only done on the coarse mesh and computations done
with the hierarchical multilevel method and the averaged multilevel method.

2. Hierarchical Multilevel Finite Volume Method I

We present in this section a hierarchical multilevel method using a finite volume
discretization (HFVM) for the following advection equation on the one-dimensional
domain M = (0, L) :

(1)
∂u

∂t
(x, t) +

∂u

∂x
(x, t) = 0, x ∈ M, t > 0.

This equation is supplemented with the boundary condition

(2) u(0, t) = 0, t > 0,

and the initial condition

(3) u(x, 0) = u0(x), x ∈ M,


